2022年 等差数列的前n项和说课稿

上传人:无*** 文档编号:49913830 上传时间:2022-01-19 格式:DOC 页数:20 大小:27.02KB
返回 下载 相关 举报
2022年 等差数列的前n项和说课稿_第1页
第1页 / 共20页
2022年 等差数列的前n项和说课稿_第2页
第2页 / 共20页
2022年 等差数列的前n项和说课稿_第3页
第3页 / 共20页
点击查看更多>>
资源描述
2022年 等差数列的前n项和说课稿 2022年 等差数列的前n项和说课稿1尊敬的各位专家、评委:上午好!今天我说课的课题是人教A版必修5第二章第三节等差数列的前n项和。我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。一、教材分析地位和作用数列是刻画离散现象的函数,是一种重要的属性模型。人们往往通过离散现象认识连续现象,因此就有必要研究数列。高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。在推导等差数列前n项和公式的过程中,采用了:1。从特殊到一般的研究方法;2。倒叙相加求和。不仅得出来等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。等差数列的前n项和是学习极限、微积分的基础,与数学课程的其他内容(函数、三角、不等式等)有着密切的联系。二、目标分析(一)、教学目标1、知识与技能掌握等差数列的前n项和公式,能较熟练应用等差数列的前n项和公式求和。2、过程与方法经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。3、情感、态度与价值观获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。(二)、教学重点、难点1、重点:等差数列的前n项和公式。2、难点:获得等差数列的前n项和公式推导的思路。三、教法学法分析(一)、教法教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。探索与发现公式推导的思路是教学的重点。如果直接介绍“倒叙相加”求和,无疑就像波利亚所说的“帽子里跳出来的兔子”。所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。应用公式也是教学的重点。为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过“选择公式”,“变用公式”,“知三求二”三个层次来促进学生新的认知结构的形成。(二)、学法建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。四、教学过程分析(一)、教学过程设计1、问题呈现阶段泰姬陵坐落于印度古都阿格,是世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成共有100层。你知道这个图案一共花了多少宝石吗?设计意图:(1)、源于历史,富有人文气息。(2)、承上启下,探讨高斯算法。2、探究发现阶段(1)、学生叙述高斯首尾配对的方法(学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但是他们对这种方法的认识可能处于模仿、记忆的阶段。)(2)、为了促进学生对这种算法的进一步理解,设计了下面的问题。问题1:图案中,第1层到第21层共有多少颗宝石?(这是奇数个项和的问题,不能简单模仿偶数个项求和的方法,需要把中间项11看成是首、尾两项1和21的等差中项。通过前后比较得出认识:高斯“首尾配对”的算法还得分奇数、偶数个项的情况求和。(3)、进而提出有无简单的方法。借助几何图形的直观性,引导学生使用熟悉的几何方法:把“全等三角形”倒置,与原图补成平行四边形。获得算法:S21=21(1+21)/2设计意图:几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面,只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。问题2:求1到n的正整数之和。即Sn=1+2+3+nSn=n+(n1)+(n2)+12Sn=(n+1)+(n+1)+。+(n+1)Sn=n(n+1)/2 (从求确定的前n个正整数之和到求一般项数的前n个正整数之和,旨在让学生体验“倒叙相加求和”这一算法的合理性,从心理上完成对“首尾配对求和”算法的改进)由于前面的铺垫,学生容易得出如下过程:Sn=an+an1+an2+a1,Sn= n(a1+ an)/2。图形直观等差数列的性质(如果m+n=p+q,那么am+an=ap+aq。)设计意图:一言以蔽之,数学教学应努力做到:以简驭繁,平实近人,退朴归真,循循善诱,引人入胜。3、公式应用阶段(1)、选用公式公式1 Sn= n(a1+ an)/2;公式2 Sn =na1+n(n1)d/2。(2)、变用公式(3)、知三求二例1某长跑运动员7天里每天的训练量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。这位长跑运动员7天共跑了多少米?(本例提供了许多数据信息,学生可以从首项、尾项、项数出发,使用公式1,也可以从首项、公差、项数出发,使用公式2求和。达到学生熟悉公式的要素与结构的教学目的。通过两种方法的比较,引导学生应该根据信息选择适当的公式,以便于计算。)例2等差数列10,6,2,2,的前多少项和为54?(本例已知首项,前n项和、并且可以求出公差,利用公式2求项数。事实上,在两个求和公式中包含四个元素,从方程的角度,知三必能求余一。)变式练习:在等差数列an中,a1=20,an=54,Sn =999,求n。知三求二:例3在等差数列an中,已知d=20,n=37,Sn =629,求a1及an。(本例是使用等差数列的求和公式和通项公式求未知元。事实上,在求和公式、通项公式中共有首项、公差、项数、尾项、前n项和五个元素,如果已知其中三个,连列方程组,就可以求出其余两个。)4、当堂训练,巩固深化。通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。采用课后习题1,2,3。5、小结归纳,回顾反思。小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。(1)、课堂小结、回顾从特殊到一般的研究方法;、体会等差数列的基本元素的表示方法,倒叙相加的算法,以及数形结合的数学思想。、掌握等差数列的两个球和公式及简单应用(2)、反思我设计了三个问题、通过本节课的学习,你学到了哪些知识?、通过本节课的学习,你最大的体验是什么?、通过本节课的学习,你掌握了哪些技能?(二)、作业设计作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。我设计了以下作业:1、必做题:课本p118,练习1,2,3;习题3。3第2题(3,4)。2、选做题:在等差数列中,(1)、已知a2+a5+a12+a15=36,求是S16。(2)、已知a6=20,求s11。(三)、板书设计板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。五、评价分析学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。谢谢!2022年 等差数列的前n项和说课稿2以下是高中数学等差数列前n项和的公式说课稿,仅供参考。教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。(2)通过公式的运用,树立学生大众教学的思想意识。(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。教学重点:等差数列前n项和的公式。教学难点:等差数列前n项和的公式的灵活运用。教学方法:启发、讨论、引导式。教具:现代教育多媒体技术。教学过程一、创设情景,导入新课。师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯神速求和的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:把从1到100的自然数加起来,和是多少?年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。例1,计算:1+2+3+4+5+6+7+8+9+10.这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。上面两式相加得2S=11+10+.+11=1011=11010个所以我们得到S=55,即1+2+3+4+5+6+7+8+9+10=55师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。理由是:1+100=2+99=3+98=.=50+51=101,有50个101,所以1+2+3+.+100=50101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?生3:数列an是等差数列,若m+n=p+q,则am+an=ap+aq.二、教授新课(尝试推导)师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。生4:Sn=a1+a2+.an-1+an也可写成Sn=an+an-1+.a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+.(an+a1)n个=n(a1+an)所以Sn=#FormatImgID_0#(I)师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得Sn=na1+#FormatImgID_1#d(II) 上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)高2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?an=a1+(n-1)d,Sn=#FormatImgID_2#=na1+#FormatImgID_3#d;这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。三、公式的应用(通过实例演练,形成技能)。1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:(1)1+2+3+.+n(2)1+3+5+.+(2n-1)(3)2+4+6+.+2n(4)1-2+3-4+5-6+.+(2n-1)-2n请同学们先完成(1)-(3),并请一位同学回答。生5:直接利用等差数列求和公式(I),得(1)1+2+3+.+n=#FormatImgID_4#(2)1+3+5+.+(2n-1)=#FormatImgID_5#(3)2+4+6+.+2n=#FormatImgID_6#=n(n+1)师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式=1+3+5+.+(2n-1)-(2+4+6+.+2n)=n2-n(n+1)=-n生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=-1-1-.-1=-nn个师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。例3、(1)数列an是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4又d=-2,a1=6S12=12 a1+66(-2)=-60生9:(2)由a1+a2+a3=12,a1+d=4a8+a9+a10=75,a1+8d=25解得a1=1,d=3 S10=10a1+#FormatImgID_7#=145师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。师:(继续引导学生,将第(2)小题改编)数列an等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。2、用整体观点认识Sn公式。例4,在等差数列an, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)师:来看第(1)小题,写出的计算公式S16=#FormatImgID_8#=8(a1+a6)与已知相比较,你发现了什么?生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=818=144。师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。最后请大家课外思考Sn公式(1)的逆命题:已知数列an的前n项和为Sn,若对于所有自然数n,都有Sn=#FormatImgID_9#。数列an是否为等差数列,并说明理由。四、小结与作业。师:接下来请同学们一起来小结本节课所讲的内容。生11:1、用倒序相加法推导等差数列前n项和公式。2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。生12:1、运用Sn公式要注意此等差数列的项数n的值。2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。数学思想:类比思想、整体思想、方程思想、函数思想等。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!