用于柴油脱硫离子液体的再生研究毕业论文

上传人:痛*** 文档编号:44501479 上传时间:2021-12-05 格式:DOC 页数:56 大小:1.29MB
返回 下载 相关 举报
用于柴油脱硫离子液体的再生研究毕业论文_第1页
第1页 / 共56页
用于柴油脱硫离子液体的再生研究毕业论文_第2页
第2页 / 共56页
用于柴油脱硫离子液体的再生研究毕业论文_第3页
第3页 / 共56页
点击查看更多>>
资源描述
用于柴油脱硫离子液体的再生研究摘 要离子液体具有熔点低,蒸气压低,电化学窗口大,酸性可调节及良好的溶解度、黏度和密度等特点,在有机反应中不但可以代替普通有机溶剂,而且还可提高反应产率和反应的立体选择性等优点,已经在很多领域中得到广泛的应用。本文使用的是自制的1-丁基-3-甲基咪唑三氯化铁盐(BmimFeCl4),研究了离子液体的黏度和电导率随温度的变化,并对它们进行拟合。采用循环伏安法研究了Fe(III)/Fe(II)在BmimFeCl4体系中的氧化还原过程,结果表明该过程是一个受Fe3+扩散控制的可逆过程,但是发现Fe3+没有完全还原为Fe2+,40时转移的电子数仅为0.3,Fe(III)在BmimFeCl4体系中的扩散系数与温度的关系符合Arrhenius公式,其扩散活化能为23.288kJ/mol,进一步的电解表明合适的电解电压为-1.6V,电流密度随温度的升高而增加,乙二醇不能有效提高铁基离子液体的电导率。关键词:BmimFeCl4,离子液体,电解,循环伏安法,电化学行为AbstractIonic liquids have properties of low melting point,low vapor pressure,wide electrochemical window,adjustable acidity,strong solubility,high viscosity and so on.Ionic liquids (ILs) have been applied in many fields of industry process and science research in world in recent years.With increasing application,synthesis of ILs andphysicochemical and thermo physical properties of ILs are required.This article used BmimFeCl4 made by us,the changing of Ionic liquids viscosity and conductivity with temperature were studied and fitted.The electrochemical behaviors of Fe()/Fe() redox couple in BmimFeCl4 system were investigated by cycle voltammetry.the results showed that the process was a diffusion-controlled reversible process.But that did not fully change Fe3+ to Fe2+,at 40 the number of electrons transferred only 0.3.The relationship between diffusion co-efficient and temperature agreed well with the Arrhenius equation.Reduction peak current increases with increasing temperature ,the diffusion activation energy of Fe(III) in BmimFeCl4 system was 23.288kJ/mol.Further electrolysis showed that the proper electrolytic voltage was -1.6V and current density increased with increasing temperature,Ethylene glycol can not improve the conductivity of iron-based ionic liquids.Key words:BmimFeCl4,Ionic liquid, Electrolysis,Cyclic voltammetry electrochemical behavior毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日目 录第一章 前言11.1 绪论11.2 柴油加氢脱硫技术21.3 离子液体脱硫技术及离子液体的简介21.4 离子液体的合成41.5 离子液体的性质51.5.1 熔点51.5.2 热稳定性51.5.3 黏度61.5.4 密度61.5.5 导电性61.5.6 电化学窗口61.6 离子液体的特点71.7 离子液体的应用71.7.1 离子液体在化学反应中的应用71.7.2 离子液体在分离纯化的应用81.7.3 离子液体在电化学中的应用91.7.4 咪唑类离子液体合成及其应用研究91.8 硫化氢氧化吸收-电解制氢双反应91.9 电解的影响因素111.10 双反应系统的电极制备121.10.1 电极的制备方法121.10.2 电极的压制131.11 电解槽的设计141.11.1 电解槽结构的改造141.11.2 对系统实现现场总线控制151.12 电化学法吸收161.13 本论文研究的意义和内容16第二章 实验方法182.1 实验仪器及设备182.2 实验原料与试剂182.3 电极材料182.4 离子液体BmimFeCl4的制备192.5 离子液体的物性测试192.5.1 离子液体的密度测试192.5.2 离子液体的黏度测试192.5.3 离子液体的电导率测试192.6 离子液体的电化学行为192.6.1 实验装置192.6.2 实验过程202.7 离子液体的电解202.7.1 实验装置202.7.2 实验过程20第三章 结果与讨论223.1 离子液体的物性分析223.1.1 密度的测量223.1.2 温度对黏度的影响223.1.3 温度对电导率的影响263.1.4 黏度对电导率的影响273.2 BmimFeCl4离子液体的电化学行为分析293.2.1 BmimFeCl4离子液体的循环伏安曲线293.2.2 电流与电位的关系303.2.3扫描速率与峰值电流的关系343.2.4 温度对Fe(III)扩散系数的影响353.3 离子液体的电解再生研究373.3.1 电解电压对电流密度的影响373.3.2 电解温度对电流密度的影响383.3.3 乙二醇对离子液体电导率的影响38第四章 实验结论与展望404.1 结论404.2 展望41参考文献42致 谢44声 明4549第一章 前言1.1 绪论世界石油的消耗量逐年增加,石油重质化趋势日趋明显。环保标准日益严格,要求生产对环境友好的清洁柴油,而我国现行柴油质量指标与国外发达国家指标相比,主要差距是硫含量高。柴油中硫在高温燃烧时生成硫的氧化物,不但腐蚀汽车发动机的零部件,而且也会将颗粒污染物(PM)、Nox排放到大气中形成酸雨,破坏本来就很脆弱的生态环境。同时柴油中所含的硫直接影响到柴油车尾气中颗粒的组成,这种颗粒物主要是碳、可溶性有机物和硫酸盐。柴油硫含量越多,燃烧时生成二氧化硫就越多,二氧化硫会引起人体呼吸系统疾病,严重可致癌。因此车辆必须使用清洁柴油,柴油中的硫含量降低已经成为国内外热点问题之一。柴油中的硫主要以硫醇、硫醚、噻吩及噻吩衍生物的形式存在,约占原油中总硫含量的16%,占柴油中总硫含量的85%以上,其中苯并噻吩(BT)和二苯并噻吩(DBT)又占噻吩类的70%以上。这些多环噻吩稳定性强,在高温(400)、高压(氢分压310MPa)下也很难被加氢脱除。目前燃料油主要的脱硫方法是加氢脱硫,加氢脱硫方法因其技术比较成熟而被广泛使用,但硫化氢气体是一种具有臭鸡蛋气味、有毒有害的气体。硫化氢气体的存在不仅会造成金属管道和金属设备的腐蚀、催化剂的中毒,而且会威胁人身安全。随着加工高含硫原油量的增加和国家对环境保护工作的日益重视,如何有效地处理硫化氢已越来越引起人们的重视。虽然早在80年代,国内外开展了在酸性溶液中Fe3+氧化电解硫化氢生成硫磺和氢气的研究,但是由于水相中Fe3+的导电率比较低,而需要在吸收氧化液里面加入高浓度的酸,这种酸度的体系不仅腐蚀性高而且降低了吸收氧化净化硫化氢的效果,更为重要的是高酸度形成的酸雾还会对环境造成污染。离子液体由于本身具有良好的电化学性能,例如良好的导电性能从而无需加入高浓度的酸作为电解的支持电解质,从而不需要使用特殊材料来制造电解槽和电极,降低了电解成本。因此采用离子液体氧化硫化氢生成硫磺后,在对离子液体进行电解以生成氢气和实现离子液体的再生的工艺为氧化-还原工艺注入了新的活力。铁基离子液体对硫化氢具有吸附性和氧化性,能将其氧化为硫磺而脱除,且在脱硫和再生工艺过程中产生的副产物水将会与疏水性脱硫剂铁基离子液体分层,不会造成脱硫体系的pH值变化、脱硫剂浓度稀释等问题,从而无需定期调控pH值和添加脱硫剂,避免了传统湿法氧化法的共同问题的出现。铁基离子液体氧化硫化氢脱硫的新工艺的研究对于构建绿色湿法氧化脱硫工艺具有重要研究意义和应用价值。通过实验发现离子液体可以有效地从柴油中脱硫,而且操作简单条件温和无污染。进一步研究发现离子液体的阴离子对脱硫率的影响不如阳离子影响大,可能是含硫化合物在离子液体中的溶解度决定于其在离子液体中原子的空间排列。同时还研究了柴油与离子液体混合的摩尔比对脱硫率的影响,离子液体的比率越大脱硫效果越好。1.2 柴油加氢脱硫技术随着多环硫化物含量的增加,脱硫的难度增大。柴油中的有机硫化物在压力为7.1MPa,温度为300,催化剂为Mo-Co/Al2O3时,加氢难易的顺序为:二苯并噻吩苯并噻吩噻吩硫醇、硫醚。周轶峰1等用3层前馈网络分析了柴油的性质、工艺条件对加氢脱硫效果的影响。工艺条件对加氢脱硫反应深度影响的顺序为:反应温度空速氢对原料油体积比氢分压;柴油性能对反应深度影响顺序为:密度50%馏出点氮质量分数硫质量分数。郭蓉2等开发的FH-DS催化剂,在氢气分压为6.5MPa、体积空速1.7h-1、反应器入口温度313的条件下,能将柴油硫的质量分数从2.38%降到300gg-1以下,脱硫率高达98.7%。刘坤3等研制的26%(NiO+MoO3)P/(15%HUSY+85%-Al2O3)催化剂,在反应温度340、反应压力4MPa、体积空速3h-1的条件下,柴油的脱硫率和脱氮率则达到100%4。1.3 离子液体脱硫技术及离子液体的简介离子液体在燃料油中脱硫的应用进展:燃料油中的含硫化合物主要有硫醇、硫醚、二硫化物、噻吩及其衍生物等。工业中常用的脱硫方法是加氢脱硫,其缺点是操作条件苛刻,在高温高压条件下进行、H2消耗量大、能耗高,很难完全脱除二苯并噻吩(DBT)及其衍生物。因此,研究人员提出了水蒸气脱硫、碱性抽提、吸附脱硫、生物脱硫和氧化脱硫等非加氢脱硫技术。但这些方法也存在操作费用高,一次性投资大,以及所使用的化学试剂与处理过程会对环境产生污染等问题。研究表明,离子液体对传统的加氢方法难以去除的噻吩类含硫化合物有较好的脱除效果,而且离子液体脱硫操作条件简单、可在室温下进行,并可忽略蒸汽压、过程简单方便、易于回收利用,克服了传统脱硫方法的弱点,离子液体是近几年发展起来的一种绿色溶剂,是具有发展前途的环境友好脱硫技术5。离子液体(ionic liquid)即在室温或室温附近温度(-3050)下呈液态的完全由离子构成的物质,又称室温离子液体(room temperature ionic liquid)、室温熔融盐(room temperature mohen salts)、有机离子液体等6。离子液体并不等同于电解质溶液,在这种溶液中不存在电中性的分子,全部是阴离子和阳离子。离子液体的发展简史:离子液体的发现起源1914年,当时Walden报道了(EtNH3)NO3的合成。此种物质由浓硝酸和乙胺反应制得,但由于在空气中不稳定而极易发生爆炸,因此在当时并没有引起人们的注意,这是最早的离子液体。直到1975年,R.A.osteryoung等人,在努力寻找有低熔点、无水和可以改变的酸碱性等特性的溶剂过程中,发现了1951年Hurlcy报道的AIC13和藻化乙基毗睫形成的室温烙盐体系能满足他的要求,通过实验证实了这一体系是很好的烷基化反应的介质。1979年J.Robinson和R.A.osteryoung报道了由AIC13与氯化正丁基吡啶(BPyCl)形成的离子液体体系,并对某些芳香碳氢化合物在该离子液体中的电化学性质和光谱学性质进行了研究,结果表明这种室温离子液体是很好的电解质,能与有机物混溶、不含质子、电化学窗口宽等特点。1952年,Hussey即报道了由AlCl3。与氯化l-乙基-3-甲基咪唑(EmimCl)合成的新的室温熔盐,其可以溶解噻蒽、二茂铁、CuC12、TiCl4等多种物质,也与苯、甲苯、乙睛等溶剂混溶,因此在有机合成中开始应用,但当时这一体系虽然有较优的物理化学性质,可存在着对水和空气敏感的缺点,且有较强的腐蚀性,不利于操作。因此,探索对水和空气稳定的离子液体显得十分迫切。九十年代初,Wilkes等首次合成出对水和空气稳定的离子液体EmimBF4。不久人们又合成出许多新的离子液体,主要是通过混合一定的二烷基咪唑阳离子(如:Emim+、Bmim+)和一些阴离子(如:BF4-、PF6-)而得到的。这些新的离子液体的物理性质和电化学性质类似于AIC13室温熔盐,但不像AlCl3那样对水和空气敏感,因而被广泛地开发和应用。进入21世纪,离子液体研究进入一个新的阶段,研究的主要特征是从“耐水体系”向“功能体系”发展,即根据某一应用需求,设计并合成出具有特定功能的离子液体,如2003年世界上第一套基于离子液体的脱硫工艺在德国BASF实现大规模工业应用,2005年,我国建立了离子液体的大规模制备装置,目前在大多数国家,离子液体的多项应用技术进入了中试或工业化设计阶段7。离子液体的分类从理论上讲,改变不同的阳离子、阴离子组合可设计合成许多种离子液体,离子液体经过近二十年的研究发展,体系也逐渐壮大,但当前研究的离子液体种类还不是很多8。常规离子液体的阳离子一般为含氮或磷的有机大离子,其中季铵类离子包括:(1)咪唑离子im+及其取代衍生物:咪唑离子的两个N原子是相同的,如N,N或1,3取代的咪哇离子记为R1R3im+,如N-乙基-N-甲基咪唑离子记为EMIm+,若2位上还有取代基则记为RlR2R3im+。(2)吡啶离子Py+及其衍生物:吡啶离子的N原子上有取代基R则记为RPy+。(3)季铵离子R4N+,R4表示N原子上的四个取代基,例如二甲基乙基丁基铵可简记为N1124+。此外,还有其它种类的季铵。如,N,N-甲基乙基取代的四氢吡咯(吡咯烷)正离子记为P12+。(4)季磷离子R4P+,R4表示P原子上的四个取代基,表示方法与季铵离子类似。其中最稳定、最常见的是烷基取代的咪唑阳离子,而且通过调整烷基取代基的长度和对称性可以形成低熔点的咪唑类离子液体9。1.4 离子液体的合成离子液体种类繁多,改变阳离子、阴离子的不同摩尔比,可以设计合成出成千上万的离子液体。离子液体的合成大体上有两种基本方法:一步合成法和两步合成法。一步合成法:包括亲核试剂一叔胺(包括吡啶,咪唑和吡咯)与卤代烃或醋类物质(羧酸酯,硫酸酯或磷酸酯)发生亲核加成反应或利用叔胺的碱性与酸发生中和反应而一步生成目标离子液体的方法7。两步合成法:直接法难以得到目标离子液体,必须使用两步合成法。两步法制备离子液体的应用很多。常用的四氟硼酸盐和六氟磷酸盐类离子液体的制备通常采用两步法。首先,通过季胺化反应制备出含目标阳离子的卤盐;然后用目标阴离子置换出卤素离子或加入Lewis酸来得到目标离子液体。在第二步反应中,使用金属盐MY(常用的是AgY)、HY或NH4Y时,产生Ag盐沉淀或胺盐、HX气体容易被除去,加入强质子配酸HY,反应要求在低温搅拌条件下进行,然后多次水洗至中性,用有机溶剂提取离子液体,最后真空除去有机溶剂得到纯净的离子液体。特别注意的是,在用目标阴离子(Y)交换X-(卤素)阴离子的过程中,必须尽可育出也使反应进行完全,确保没有X-阴离子留在目标离子液体中,因为离子液体的纯度对于其应用和物理化学特性的表征至关重要。高纯度二元离子液体的合成通常是在离子交换器中利用离子交换树脂通过阴离子交换来制备。另外,直接将Lewis酸(MY)与卤盐结合,可制备阳离子MnXny+1型离子液体,如氯铝酸盐离子液谁脚答划的制备就是利用这个方法,如离子液体的性质中所述,离子液体的酸性可以根据需要进行调节9。本实验采用的离子液体合成方法是取一定量的BmimCl溶液,然后用BmimCl与FeCl3发生反应得到BmimFeCl4离子液体。1.5 离子液体的性质离子液体随阴离子和阳离子的变化,它们的物化性能会在很大范围内相应改变,因而离子液体的结构特征与其重要的物化特性有直接的关系。1.5.1 离子液体的物理性质熔点:众所周知,离子液体的结构直接影响其性质,尤其是熔点。熔点是评价离子液体的一个关键参数,因而研究离子液体的组成与熔点的关系是非常必要的。在常见的离子液体中,咪唑盐熔点比同碳数的铵盐要低,而且咪唑盐阳离子的大小、对称性、不同碳级数的取代基及取代基链长的改变均会影响离子液体的熔点。一般情况下,低熔点离子液体的阳离子具备以下特征:对称性低、分子间的作用力较弱、阳离子电荷分布均匀,并且呈低的电荷密度。当阳离子相同时,离子液体的熔点高低呈以下规律:Cl-PF6-N02-NO3-AIC14-BF4-CF3SO3-CF3CO2-。离子液体热稳定性的决定因素是阴离子,如Emim(CF3SO2)2N、EmimCF3SO3、EmimBF4在400左右也可以稳定存在,但EmimCF3COO在150就开始失重。热稳定性:离子液体的熔点比较低,在热分解以前呈液态,因此其液态温度范围一般在200-300左右。如果作为溶剂,它的可应用温度范围很宽。离子液体的热稳定性分别受杂原子-碳原子之间作用力和杂原子-氢键之间作用力的限制,因此与组成的阳离子、阴离子的结构和性质密切相关。一般来讲,咪唑类的离子液体热稳定性比季铵类的离子液体的热稳定性要好。并且随着咪唑环上取代基增多,离子液体的热稳定性随之提高。黏度:从宏观上说,黏度不是一个热力学性质或状态函数,但从微观上看,黏度也是由分子运动和分子间相互作用里产生的,与热力学性质无本质差别。流体的黏度实际上由其中的氢键和范德华力来决定的。流体的黏度是由流体间的内摩擦产生的,形式上表现为流体流动时的阻力。由于咪唑阳离子上电负性较小的氢原子与电负性较大的氯原子之间形成氢键的缘故,离子液体的粘度会随之增加。密度:一般来说,物质密度的变化不仅与温度、压力有关,还与相对分子质量、分子间的相互作用力和分子结构有关。离子液体的密度与阴离子和阳离子的种类有很大的关系。,常温下(291303K)密度范围大致在1.11.7gcm-3。通过比较含不同取代基咪唑阳离子的氯铝酸盐的密度发现,离子液体的密度与咪唑盐阳离子上N-烷基链的长度几乎成线性关系。随着阳离子变大,离子液体的密度减小10。阴离子对密度的影响更加明显,通常是阴离子越大,离子液体的密度也就越大11。因此,在设计不同密度的离子液体时,应先由阴离子来确定其大致范围;再选择阳离子对密度进行微调。导电性:离子液体的离子导电性是其电化学应用的基础。离子液体的电导率一般在1.0l0-3S/cm左右,其大小与离子液体的黏度、分子质量、密度以及离子大小有关,其中黏度的影响最为显著7。在一个较宽的范围内,黏度越大,离子导电性越差;而相反的,密度越大,导电性越好。同时离子大小和重量的影响也不容忽视。另外,含有体积相对较小的阴离子的离子液体的导电性较高。电化学窗口:离子液体通常具有很宽的电化学窗口、足够高的电导率以及优良的溶剂传递特性,使其更合适于用作电化学过程研究中的溶剂。对于离子液体,电化学窗口主要是由阳离子的还原能力以及阴离子氧化能力决定,指电解时阳极极限电势与阴极极限电势之间的差值,也可以说是离子液体开始发生氧化反应与开始发生还原反应时的电势之差。大部分的离子液体的电化学窗口都大于3V,一般为57V。1.5.2 离子液体的特点(1)由于组成离子液体的阴、阳离子可以根据利用者的需要或具有某种特种性质而设计,所以离子液体也被一些化学家称为“设计者溶液”。(2)与传统的有机溶剂相比,离子液体具有蒸汽压近似等于零,不挥发,不易燃易爆,不易氧化,在300以下能稳定存在的特点,是一种理想的有机溶剂。(3)对许多无机盐和有机物具有良好的溶解性,这就使一些反应可以均相进行。(4)离子液体具有大于3V的电化学窗口,对于电化学具有独特的作用和意义。(5)有些离子液体具有对空气和水均稳定,便于反应操作处理和易于回收的优点,这也为有机合成化学家提供了一个崭新的反应环境,可以避免大量易挥发有机溶剂使用所带来的环境污染和对人的危害,是绿色的代替溶剂。(6)有的离子液体与一些有机溶剂不互溶,可以提供一个非水、极性可调的两相体系,在化学分离中可以作为一个水的非共溶极性相使用。(7)有些离子液体表现出Lewis、Franklin酸性及超强酸性。(8)离子液体通常含有弱配合离子,所以具有高极化潜力而非配合能力。这些特点使离子液体在有机化学合成、有机化学催化、无机化学合成、电化学、绿色化学和分离过程等领域显示出良好的前景,也使离子液体受到了各国化学家的重视12。1.5.3 离子液体的应用根据离子液体的特性,目前离子液体的应用研究领域主要集中在合成反应、分离过程和电化学等3个方面。离子液体在化学反应中的应用:由于离子液体对有机物表现出良好的溶解能力及其自身的稳定性,使之作为有机溶剂的替代物在众多有机反应中得到应用,并且有文献表明,离子液体能增加反应的活性、催化性及催化剂的稳定性。激发化学家聚焦于此的原因还在于人们一直倡导的绿色化学和绿色合成。对于室温离子液体在化学反应过程中的应用,几乎所有的化学合成反应都被研究过,但主要还是集中在催化反应体系及重要的有机化学反应中,在反应过程中不仅可以作为绿色溶剂,离子液体表现出的Lewis,Franklin酸及超强酸酸性及可调性,使之可作为催化剂替代硫酸、氢氟酸、AIC13等的酸催化过程,形成环境友好催化体系。根据反应的关键步骤,可将这些反应划分为3类13:(1)加氢和重排反应,包括烯烃、芳烃等的加氢和Beckmann重排;(2)C-C、C-O键的断裂反应,如聚乙烯裂解、醚和环醚的酸化开裂、油页岩和重油的溶解以及环氧化物的不对称开环;(3)C-C、C-杂原子键的偶合反应,包括Friedel-Crafts烷基化、酞基化反应,Diels-Alder反应,二聚、齐聚、聚合反应,烷基化如线性烷基苯的合成,烯丙基化,Heck反应等。在应用离子液体于化学反应中,离子液体不仅表现出具有常规的特性,还可有如下优点:收率高,选择性好,反应条件温和,产品易分离,不需要其他有机溶剂,催化效率高,催化剂不流失,离子液体和催化剂可循环使用,反应的危险性降低,可进行在传统溶剂中不能进行的反应等。离子液体在分离纯化的应用:由于一些离子液体不溶于水、不挥发,蒸馏时不损失,可以反复循环使用,既不污染水相,也不污染大气,因此是真正意义上的绿色溶剂,现在正被各国化学家在分离过程中越来越多地采用。更令人兴奋的是,离子液体中被萃取的低挥发性有机物可以用超临界流体除去,这是两种绿色过程的完美结合。(1)萃取分离以离子液体为萃取相,则离子液体应与萃余相不相溶,目前的研究都是从水溶液中萃取有机或无机物,萃取物不同所选离子液体也应不同。对于萃取有机物的研究,最早进行的是美国Alabama大学的Rogers用憎水的离子液体BMImPF6从水中萃取苯的衍生物如甲苯、苯胺、苯甲酸、氯苯等,报道了分配系数。此外还有用超临界CO2从离子液体中萃取有机物;用离子液体从水中萃取金属离子等相关报道14。(2)气体的吸收分离许多离子液体有吸湿性,可以从气体混合物中有效去除水蒸气。Scurto等研究表明CO2在离子液体中的溶解度非常大,气体在离子液体中的溶解度可通过选择阴、阳离子及其取代基而调节。美国南Alabama大学研究用咪唑溶解在离子液体BMImPF6中的混合液除去天然气中的H2S和CO2。而传统的固定化液膜由于蒸发损失而使性能降级,因离子液体是不挥发的,所以可做成非常稳定的固定化液膜。(3)汽油萃取脱硫以离子液体为萃取剂,应用于汽、柴油的脱硫,由于碳氢化合物和含硫化合物在离子液体的溶剂度有很大差异,相比之下碳氢化合物在离子液体的溶解度远远小于含硫化合物在离子液体的溶解度,从而得以有效脱硫。此外,离子液体应用于生物技术的分离提纯,如从生物燃料(ABE)的发酵液中回收丁醇,蒸馏、全蒸发等方法都不经济,离子液体因其不挥发性以及与水的不混溶性,非常适合于从发酵液中回收丁醇15。邓友全等人还将离子液体应用于固-固分离的研究中16。离子液体在电化学中的应用:由于离子液体固有的离子导电性、不挥发、不易燃,电化学窗口宽,可以减轻自放电,作电池电解质不需要传统熔盐的高温,可以用于制造新型高性能电池。美国Air Force Academy中心的Wilkes等研制的DME电池中使用的离子液体包含阳离子为:EMIM+、BMIM+,负离子为:BF4-、PF6-、AlCl4-、CF3SO3-等,并获得良好的效果。瑞士联邦技术研究所的Bonhte研究用二烷基咪唑类离子液体做太阳能电池的电解质,因为其蒸气压低,粘度低,导电性高,电化学窗口宽,对水和氧气稳定,在-30常温为液体,特别适用于应排除水气且长期操作的电化学系统。咪唑类离子液体合成及其应用研究:近年来,随着人们对离子液体研究的不断深入,人们对离子液体的应用迅速扩展其他的领域,例如应用到功能材料领域。当作为润滑材料使用时,发现离子液体不仅性能优越,且由于其较宽的液态范围,较好的汽压,对于解决航空航天领域润滑剂凝固、氧化分解和挥发流失现象具有非常重要体中溶解少量有机物其粘度会迅速降低这一特点,可将离子液体取代石英晶体微量有机涂层,充当敏感材料检测有机挥发物。此外,离子液体还可作为太阳能储存材料和光学材料等16。1.6 硫化氢氧化吸收-电解制氢双反应采用含高价铁离子的强酸性溶液,进行了氧化吸收硫化氢反应过程与电解制氢及氧化液再生反应过程相结合,硫化氢的电解是一个多相反应过程在阴极析出氢气的同时,阳极会同时有硫磺生成,采用方法是将阳极的析硫过程和阴极析氢过程分开进行,即双反应过程。其基本原理如下:在氧化吸收H2S多反应器中,含Fe3+的强酸性反应液氧化吸收一定浓度组成的硫化氢原料气,进行的反应为:2Fe3+H2S2Fe2+2H+S 反应式(1-1)电解反应器中进行的反应及电对的标准电极电位为阳极:2Fe2+2Fe3+2e EV3+/V2+=0.771V 反应式(1-2)阴极:2H+2eH2 EH+/H2=0V 反应式(1-3)总反应:2Fe2+2H+2Fe3+H2该反应过程的基本流程为:图1-1所示的整个循环过程可以连续进行,但其中具体的单元操作均是间歇的,图1-2中的氧化吸收H2S反应器采用的是无填料的鼓泡床反应釜。实验时,先将准确分析过Fe2+和Fe3+的反应吸收液加入反应釜中,并采用DF-101D集热式恒温磁力搅拌器固定转速搅拌,然后,用N2吹扫整个反应系统,使系统内基本不含氧,并测试气体密度,在指定温度和压力下,将准确分析过的H2S原料气通入反应釜中,反应一定时间后,停止通入H2S原料气,再用N2将釜内未反应的硫化氢气体吹出,经约含3%醋酸锌的尾气吸收液吸收,并对吸收液进行取样分析(以此计算未反应吸收的硫化氢的摩尔数),在常温常压下,用微孔过滤器抽滤富含Fe2+的氧化液,分离回收硫磺,并对氧化液中Fe2+和Fe3+进行分析。图1-1 无填料的鼓泡床反应釜 图1-2 鼓泡床氧化吸收反应器结构图实验用的电解反应器采用的是同心圆式电解槽,其阴极室为内圆空间,阳极室为同心圆的环形空间,两者用陶瓷隔膜分开,阴、阳极均采用铂网电极。实验时,先将准确分析过的Fe3+和Fe2+的氧化循环液加入阳极室,将2.25mol/L的H2SO4加入阴极室中,阳极液采用DF-101B集热式恒温磁力搅拌器固定转速搅拌,在指定反应温度下,接通电源,恒压1.2V电解一定时间,记录电流I、电量Qc随时间的变化情况,并收集计量阴极析出的氢气体积;电解结束后,迅速将阴、阳极室隔离,将阴、阳极液分别倾入烘干的锥形瓶中,塞紧瓶口,水浴中降至室温,稳定10min后,测出回收阳极氧化液的体积,并进行Fe3+和Fe2+的分析。图1-3 电解反应器结构1,9 外壳框架 2 阳极导电板 3 纤维阳极 4,6 密封框架 5 质子交换膜 7 铂纤维阴极 8 阴极导电板由以上可以得出:采用双反应系统从硫化氢中同时制取氢气和硫磺的过程可以在较温和的条件下稳定运转,该系统的氧化吸收硫化氢过程受传质控制,在7090下,处理硫化氢含量在1540%时,硫化氢的一次吸收率可达到90%;该系统中的电解过程同样是一个受传质控制的快反应过程;硫化氢吸收过程和电解过程的活化能分别为6.185kJ/mol和16.596kJ/mol;当电解过程采用石墨为阳极,镀铂石墨为阴极时,50、槽压1.0V下制氢可以达到2.4kWh/Nm3 H2的较低电耗水平17。1.7 电解的影响因素(1)温度的影响:提高温度有利于提高电解强度,是由于电解质的传质和电极反应加速所致。(2)支持电解质浓度的影响:由于支持电解质的存在,使阳极电解液用于吸收硫化氢时效果下降,为了保持电解槽工作在较高的电解强度下(工业上可接受的强度为1000A/cm2)加入一定量HCl保持高的酸度是必须的。(3)阳极电解液组成的影响:阳极电解液中Fe2+维持在较高的水平下,虽然有利于电解过程的进行,但由于在溶液中Fe离子是一定的,因而将导致对吸收过程的不利影响。综合二个反应系统的结果,阳极液组成为FeCl3/FeCl2(0.6-0.7)M/(0.4-0.5)M时为较佳。(4)槽压的影响:提高槽压将是提高电解温度的有效手段,但同时导致制氢电耗的上升。即影响电解的因素按影响大小排列为:槽压,温度,FeCl2浓度,阳极流速,其它因素均很小18。1.8 双反应系统的电极制备1.8.1 电极的制备方法(1)刷涂法:首先将铂黑或多孔材料与铂的混合粉末与一定量剂、粘结剂、有机造孔剂充分混合成乳浊液刷涂到基底上。刷涂后自然风干,在马弗炉升温(10/min)至400,焙烧2h,再升至820,焙烧1h。(2)电镀法:在一定的电压范围内,以平滑铂片为阳极,将基体处理后作为阴极,放入电镀槽中通电,在一定电流密度下进行电镀。电流密度:30mA/cm2,氯铂酸:0.02mol/L,盐酸:0.25mol/L,醋酸铅:0.00003mol/L,时间:20min。(3)离子溅射法:采用高频电源作为激发源,将金属铂激发成离子态,然后将离子态铂定向加速溅射到样品表面形成铂金属薄膜。电压:400V,电流:1A,Ar的分压:0.1Pa,温度:80,时间:6-10min。稳定性:其中刷涂镀铂稳定性很差,电解镀铂其次,离子溅射镀铂最好。从外观上看,离子溅射法所镀电极表面有银白色金属光泽的一层铂金属薄膜,铂层分布均匀、致密,实验后铂层几乎看不出变化。电解法所镀铂层表面呈铂黑色,较为致密、粗糙度小,实验后铂层黑度变小,溶液上层飘浮有少量铂黑。刷涂法所镀铂层,表面比较粗糙,铂层较厚,呈铂黑色。从实验后的镀层表面上,可以明显看到刷涂镀铂层的膨胀和脱落,溶液中有较大块铂层的脱落。这可能是由于涂层在马弗炉高温固化后,与基体接触不够紧密,电极体相结构疏松含有较多孔隙的原因。抗电腐蚀性:在相同电解条件下,离子溅射镀铂制得的电极活性较高,电解电流密度较大;刷涂镀铂法其次;电镀法最低。这是由于离子溅射镀铂法制得的铂层,均匀分布在整个电极上,分散度较高,具有催化活性的表面积大,有利于反应气体在活性中心的吸附以及产物的脱附,从而具有较高的反应速度。电解稳定性:在恒压电解操作情况下,三种镀铂方式所制电极都具有良好的稳定性,在较长时间的恒压电解过程中,活性基本没有下降。另外可以看出,镀铂以后使电极的活性有了很大提高,由于制备方法的不同,各镀铂电极的电解活性也有差别,离子溅射镀铂较好,刷涂镀铂次之,电解镀铂较差。但三种方法所制电极的活性随时间的变化很小,基本可以认为其具有很好的电解稳定性。超声波振荡刻蚀对离子溅射法制备电极的影响:对离子溅射镀铂电极采用超声波振荡后,电流密度变小,电极的活性产生了一定的衰减。这说明经过超声波振荡以后,镀铂层中不牢固的颗粒脱落,使电极镀层表面的活性中心减少,从而导致了电极活性的降低。刷涂法所制电极的表面比较粗糙,铂层较厚,具有较好的电解活性,但与载铂基体结合力弱,在本研究体系中易脱落。电镀法所制电极的铂层电解活性和稳定性相对来说都较弱。离子溅射法所制电极的镀铂层均匀分布在整个电极上,分散度高,且与载铂基体的结合力强,在本电解体系中具有很好的稳定性和电解活性19。SPE电极的制备采用碾压法,此法是分别制备阴极和阳极。其中阴极采用镀铂(Pt:13g/m2)石墨纤维布(电极面积为4.5cm2),阳极为石墨纤维布,用软刷将聚四氟乙烯(PTFE)乳液涂渍在镀铂石墨布上,另一侧涂渍Nafion溶液,其中PTFE作为粘贴剂,且使电极形成许多防水性的微细孔道。Nafion溶液的加入不但起到了传输质子的作用,而且也具有粘贴的作用。阳极采用普通石墨布,只涂渍PTFE乳液。将处理过的石墨布于350-400焙烧处理,使PTFE 与Nafion在电极上固化。1.8.2 电极的压制将镀铂石墨布、Nafion117膜、普通石墨布依次放好,在滚压机上以滚轴之间间隙的大小为0.31cm,滚轴温度为230时反复压制1min左右,使3层贴紧。此法制备的电极结合紧密,强度较高,解决了油压机压制的电极膜与石墨布易脱落的问题,且制备速度快,方法简单。采用SPE电极技术后的效果:当阳、阴极间不再依靠溶液传递氢离子时,溶液导电能力对电解池内电阻的影响将下降。采用SPE电极后,在较低酸度下也可以获得较高的电解池性能,但阴极反应的析氢电势随氢离子浓度增大而下降,同时阳极二价铁氧化反应的起始电势变化不大,因此,酸浓度不能太低。在80、6mol/l的盐酸中,0.8V槽压下可获得工业上可接受的1000A/m2电流密度。离子交换膜类型对电解池性能的影响:隔膜的作用是阻止阳极液与阴极液中非氢离子组分的迁移,而选择性输送氢离子。因此隔膜性能(传输氢离子能力,阻断其他离子传递的能力等将直接影响到电解池性能。选择性透过氢离子的隔膜,结果表明,上海有机所的仿nafion117性能较优20。随着电极负载PTFE乳液含量的增加,交换电流密度先减小,然后增加,再减小。这是由于添加PTFE乳液后,当含量较少时,非但没有形成足够的疏水性孔道,反而覆盖了电极面积,导致电极导电性能下降,引起交换电流密度的减少。PTFE乳液的含量增加后,逐渐形成适合H2通过的疏水性孔道,有利析出H2从电极逸出,交换电流密度增加,PTFE的含量有一个最佳含量,大约为25%-40%,之后由于PTFE乳液含量太大,形成的疏水性孔道的增加对电极过程的促进作用不抵PTFE所造成电极导电性能下降的阻碍作用,所以交换电流密度减少。Nafion的含量对交换电流密度的影响:随着电极负载Nafion溶液含量的增加,交换电流密度先减小,然后增加。这是由于添加PTFE乳液后,当含量较少时,非但没有形成足够的疏水性孔道,反而覆盖了电极面积,导致电极导电性能下降,引起交换电流密度的减少。PTFE乳液的含量增加后,逐渐形成适合H2通过的疏水性孔道,有利析出H2从电极逸出,交换电流密度增加,由图上可以看出,PTFE的含量有一个最佳含量,大约为25%40%,之后由于PTFE 乳液含量太大,形成的疏水性孔道的增加对电极过程的促进作用不抵PTFE所造成电极导电性能下降的阻碍作用,所以交换电流密度减少。电解液酸度对交换电流密度的影响:增加电解液的酸度,交换电流密度有逐渐增加的趋势。这是由于电解液中H+浓度的增加,H+向电极表面扩散的速度加快,从而引起电极反应速度的提高,说明此反应是由H+扩散控制的过程。阳极液Fe2+的浓度与种类对交换电流密度的影响:溶液浓度和种类的改变,对交换电流密度影响并不显著6。1.9 电解槽的设计用素烧陶瓷材料代替离子交换膜素烧陶瓷为多孔性、高耐酸性、耐氧化性材料,可根据用途需要加工成不同孔径和孔隙率的板状、圆筒状或方桶状。将其用作隔膜,可利用其具有一定的含水率,能保证有较低的溶液透过性,不致使两极室的溶液混合。电解槽结构的改造:在以素烧陶瓷代替离子交换膜的电解实验中发现,保持阳极具有较高的电流效率(控制电流密度和Fe2+的纯度及选择合适的电极材料),可以极大地抑制副反应的发生,完全可以将阳极室和阴极室共同密封在一个大的容器内,而无需将阴极室气体单独引出,这一结构的改变,可以避免电解槽拆装方面的困难,很好地控制两电极室的液位,并保证隔膜两侧的压力平衡,避免由于引出H2 使阴阳两室产生压力差。同时这也更有利于采用桶状隔膜。对系统实现现场总线控制:采用先进的现场总线控制技术实现对整个系统优化控制,保证系统处于最佳工作状态。控制的范围包括:(1)对进出吸收塔的瓦斯气中H2S浓度进行现场监测,及时调整进塔吸收液流量;(2)根据H2S浓度的变化情况,及时调整和控制电解槽电流强度,保证电解槽处于最高电流效率状态;(3)对换热器进出口温度进行监测和控制,提高硫磺回收效率和产品纯度。素烧陶瓷材料具有一定的孔隙率,其孔径范围可根据需要进行加工调整,在工业上是较好的过滤材料。由于将陶瓷隔膜浸泡在电解质溶液中,电解质溶液可进入陶瓷材料的孔隙内,从而使隔膜具有导电性,且由于选用比较致密的陶瓷材料,并控制隔膜两侧的液面高度相等,使隔膜两侧溶液的混合程度降到最低,而带电粒子可以透过隔膜产生电迁移。因此将素烧陶瓷作为电解槽的隔膜材料是较合适的。应用中选择的陶瓷材料可以是方桶或圆桶,内充阴极液,通过导管使各个陶瓷桶联通,并与电解槽外部阴极液储槽连接,有利于溶液的循环和更换。在较大的电解槽中,可以把多个陶瓷桶规则地置于大电解槽中(如图1-4所示)。陶瓷桶的外侧为阳极液,通过机械泵使其在电解槽中循环,以利于溶液的混合,减小溶液在电极表面的浓差极化,加快传质速率。图1-4 隔膜在电解槽中的分布 图1-5 素烧陶瓷隔膜电解槽结构A 氢气出口;B 石墨毡阳极;C 素烧陶瓷隔膜;D 不锈钢阴极因此在控制电解槽电流强度的条件下,可以把电解槽设计成一体的气室结构。这样只需考虑将陶瓷隔膜规则地分布在较大的槽体内,在槽体上部进行密封,引出气体即可,从而方便了电解槽的安装和隔膜的更换,同时更利于槽体密封(如图1-5所示)。采用素烧陶瓷隔膜除上述可以方便电解槽的设计和安装外,最主要的是隔膜使用寿命长,在强酸性、强氧化性的介质中不腐蚀、不老化21。1.10 电化学法吸收电化学法吸收是指在多相反应器中电解质液体摄取气体组分,再与固体电极表面接触,通过电荷的转移形成离子。反应器是将气体的吸收和电化学反应结合在同一单元进行。通过外加电流的电化学反应大大增加了气液传质的推动力。一个用于研究聚丙烯的圆柱形电化学反应器,直径为0.075m,高为0.5m,如图1-6铂扩张的网片(用20g Pt/m2涂层)提供磁化学,用宽0.5m和长1.7m的被包裹成一个圆柱为了形成阴极填料床,阴极模型有统一的孔隙率为0.57。在反应器的中心是一对不锈钢棒做的电极,并且为避免硫化氢氧化,它可以通过阴离子膜脱离阴极室。每次运行后,用蒸馏水清洗和冲洗他们。电池电压由电源供应22。图1-6 电化学反应器1.11 本论文研究的意义和内容近年来,电化学氧化法处理含H2S气体得到较快的发展。该方法是利用Fe3+在酸性条件下与H2S反应生成单质硫,反应后的溶液通过电解再生,然后循环使用,使用的LO-CAT优点为:铁溶液无毒性、操作条件为室温、脱硫效率高、能耗低、硫磺质量好、应用广泛、用量少的特点。铁基离子液体对硫化氢具有吸附性和氧化性,能将其氧化为硫磺而脱除,且在脱硫和再生工艺过程中产生的副产物水将会与疏水性脱硫剂铁基离子液体分层,不会造成脱硫体系的pH值变化、脱硫剂浓度稀释等问题,从而无需定期调控pH值和添加脱硫剂,避免了传统湿法氧化法的共同问题的出现。铁基离子液体氧化硫化氢脱硫的新工艺的研究对于构建绿色湿法氧化脱硫工艺具有重要研究意义和应用价值。虽然离子液体脱硫可以循环使用,但是脱硫次数较多时,脱硫效率不高,而且离子液体价格较昂贵,现在还未能实现工业化生产。从节约成本,减少环境污染的角度考虑,离子液体的重复利用性也是决定其能否投入使用的关键因素之一。因此,离子液体的再生问题也引起了高度的重视。本研究重点集中在离子液体再生和制氢方面。第二章 实验方法 2.1 实验仪器及设备在实验中用到的仪器及设备如表2-1所示:表2-1 实验仪器及设备仪器名称 生产厂家电热恒温水浴锅DSY-1-2孔 北京爱琦霞商贸中心德国IM6ZAHNERelektrik 德国ZAHNER公司79-2磁力加热搅拌器 常州国华电器有限公司超声波清洗器 昆山市超声仪器有限公司DH-201电热恒温干燥箱 天津市中环实验电炉有限公司FA2004N电子分析天平 苏州江东精密仪器有限公司TG16-WS台式高速离心机 厦门亿辰科技有限公司旋转黏度计Rotovisco1 ThermoHaake(哈克)公司电导率仪sension7 美国Hach公司2.2 实验原料与试剂在实验中用到的原料及试剂如表2-2所示:表2-2 实验原料与试剂名称 分子式 含量 规格 生产厂家1-丁基-3-甲基咪唑氯盐 BmimCl 99% 工业用 河南丽华制药有限司三氯化铁 FeCl36H2O 99% 化学纯 天津市福晨化学试剂厂三氧化二铝 Al2O3 化学纯 天津艾达恒晟科技发展有限公司2.3 电极材料表2-3 电极材料名称 规格 生产厂家铂电极 3mm3mm 天津艾达恒晟科技发展有限公司铂片对电极 10mm10mm0.1mm 天津艾达恒晟科技发展有限公司参比电极 Ag/AgCl
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!