资源描述
高考数学精品复习资料 2019.5第十二章 概率和统计一基础题组1.【2007四川,文3】某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是( )(A) 克(B)克(C)克(D)克【答案】2.【2009四川,文5】设矩形的长为,宽为,其比满足,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( ) A. 甲批次的总体平均数与标准值更接近 B. 乙批次的总体平均数与标准值更接近 C. 两个批次总体平均数与标准值接近程度相同 D. 两个批次总体平均数与标准值接近程度不能确定3.【20xx四川,文4】一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )(A)12,24,15,9 (B)9,12,12,7 (C)8,15,12,5 (D)8,16,10,64.【20xx四川,文2】有一个容量为66的样本,数据的分组及各组的频数如下:11.5,15.5)215.5,19.5)419.5,23.5)923.5,27.5)1827.5,31.5)1l 31.5,35.5)12 35.5,39.5)739.5,43.5) 3根据样本的频率分布估计,大于或等于31.5的数据约占( )(A)(B) (C)(D)5.【20xx四川,文12】在集合中任取一个偶数a和一个奇数b构成以原点为起点的向量,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n,其中面积等于2的平行四边形的个数为m,则( )(A)(B)(C)(D)6.【20xx四川,文3】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数为( )A、101 B、808 C、1212 D、20xx7.【20xx四川,文7】某学校随机抽取个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。以组距为将数据分组成,时,所作的频率分布直方图是( )8.【20xx四川,文2】在“世界读书日”前夕,为了了解某地名居民某天的阅读时间,从中抽取了名居民的阅读时间进行统计分析。在这个问题中,名居民的阅读时间的全体是( )A.总体 B.个体C.样本的容量 D.从总体中抽取的一个样本【考点定位】统计基本概念.9. 【20xx高考四川,文3】某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )(A)抽签法 (B)系统抽样法 (C)分层抽样法 (D)随机数法三拔高题组1.【2007四川,文17】(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家的,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这些产品.()若厂家库房中的每件产品合格的概率为,从中任意取出4种进行检验,求至少要1件是合格品的概率.()若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件产品都合格时才能接收这些产品,否则拒收,分别求出该商家检验出不合格产品为1件和2件的概率,并求该商家拒收这些产品的概率.【答案】()(2).【考点】本题考察相互独立事件、互斥事件等的概率计算,考察运用所学知识与方法解决实际问题的能力.2.【2008四川,文18】(本小题满分12分) 设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。 ()求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;()求进入商场的3位顾客中至少有2位顾客既未购买甲种也未购买乙种商品的概率。【答案】:()0.5;()0.104.【考点】:此题重点考察相互独立事件有一个发生的概率;【突破】:分清相互独立事件的概率求法;对于“至少”常从反面入手常可起到简化的作用;3.【2009四川,文18】(本小题满分12分)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客.在省外游客中有持金卡,在省内游客中有持银卡.(I)在该团中随机采访2名游客,求恰有1人持银卡的概率;(II)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.【答案】(I);(II). 4.【20xx四川,文17】(本小题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料.()求三位同学都没有中奖的概率;()求三位同学中至少有两位没有中奖的概率.【答案】();().【命题意图】本题主要考查相互独立事件、互斥事件等概率的计算,考查运用所学知识与方法解决实际问题的能力.5.【20xx四川,文17】(本小题共12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)有甲、乙人互相独立来该租车点租车骑游(各租一车一次)设甲、乙不超过两小时还车的概率分别为、;两小时以上且不超过三小时还车的概率分别为、;两人租车时间都不会超过四小时()分别求出甲、乙在三小时以上且不超过四小时还车的概率;()求甲、乙两人所付的租车费用之和小于6元的概率【答案】()、;().6.【20xx四川,文17】(本小题满分12分) 某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和系统在任意时刻发生故障的概率分别为和.()若在任意时刻至少有一个系统不发生故障的概率为,求的值;()求系统在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.答:系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为考点定位:本题考查相互独立事件、独立重复试验、互斥事件等概念即相关的计算,意在考查考生运用概率知识与方法解决实际问题的能力.7.【20xx四川,文18】(本小题满分12分) 某算法的程序框图如图所示,其中输入的变量在这个整数中等可能随机产生。()分别求出按程序框图正确编程运行时输出的值为的概率;()甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行次后,统计记录了输出的值为的频数。以下是甲、乙所作频数统计表的部分数据。甲的频数统计表(部分) 乙的频数统计表(部分)运行次数输出的值为的频数输出的值为的频数输出的值为的频数运行次数输出的值为的频数输出的值为的频数输出的值为的频数当时,根据表中的数据,分别写出甲、乙所编程序各自输出的值为的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大。8.【20xx四川,文16】16.(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,.()求“抽取的卡片上的数字满足”的概率;()求“抽取的卡片上的数字,不完全相同”的概率.【答案】(1);(2).【考点定位】古典概型及随机事件的概率.9. 【20xx高考四川,文17】一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.()若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3214532451()若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.答:乘客P5坐到5号座位的概率为.【考点定位】本题主要考查随机事件的概率、古典概型等概念及相关计算,考查运用概率知识与方法分析和解决问题的能力,考查推理论证能力、应用意识
展开阅读全文