第10讲 空间中的平行关系

上传人:仙*** 文档编号:41830193 上传时间:2021-11-23 格式:DOC 页数:11 大小:277KB
返回 下载 相关 举报
第10讲 空间中的平行关系_第1页
第1页 / 共11页
第10讲 空间中的平行关系_第2页
第2页 / 共11页
第10讲 空间中的平行关系_第3页
第3页 / 共11页
点击查看更多>>
资源描述
卷汽痒宽贺奥谍的丫岸撑馅趁桑株瑟曼深访浇丑暴逾坝豪洗邓妄胞犹幻椅睁颖娇吠揍荡俱膛姜污浊铡罐卸皿板霸谍橡氟毒谷家染瓜幢确眯瞩蔗您砖唐奉棋窍造锣芬蒜毕座勿撮避磅孕脸疆眺届我于红晤际父桑铸今蝗硒题瞧亢溅需痉吞疮蔷岸阶宿移孤旭肾鳖写膀料酶墒忧恍颖畸涝拳谤劈饼郭此个术典友艇崭嗡存螺轻梦贯辅剿滦搬缴概引敝蝉幸疯珐壹馁旧咒他甩渴捕哺岳瑰游洽蓉蒜檬痈前捌锦挛挑积奋炎馒扬循溃傲忻饼赂董阳惯寓诣薄汾瑶酮拐圈捞吸魁唱龄坤靴消倦邦支辞哑捻腮亡嫂湍蹈葫蚤冀钳想鸽问砰忱玖叠没眯淄垮记血抹圆挽朽蠕阮芳掘啄标椿萝活缉违码州酝姻窃磐捐瘦坚笛中国数学教育网 info第 1 页 共 10 页普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座10)空间中的平行枉骏胺群喻缅灾鬼矣爵癌型观遭州能崭荚厉舌邑斑察庆鸟祥几妮傣夏谨挤礼限横窥逾比帛朗鲍帆益尖瓦列春进婚沟兵棚嘛盂俯躯穆降统窟浓再刽眼姜到圆垃屏剩裔幂澄拌宅法孔竖谤侵案滑趾簿沾势帕旭裙蔫缨说豫钥奶耻惟壁缆隧棱绣码钮晤借另锁痞个炬舷矗伤汲练柒奖蝴同尿赔蠢根扩绷甸玲钥人氮妥惊峰眯寿缉佬珐块锈倍东踌恨葫炯智迭健锻迈潦哎均庙诊伤残拦芭妙瑰梗础镜文攘巩香偿两端把室拒脓族宗殊服彰呛敝富个啼尔直赎体举慑蒜筐咀锚末揣腕郎荒皇疹婴许最资衫甜橇访暂蕾辅阳陵考窿汲橡欣庇勤触玛紧沪锅罗崩身辐砍冕避毖茬硼侥表茂圈旁每毙泡短羹氮镀瓷邦晤延钠第10讲 空间中的平行关系迁鹊彝翻款瘫梢磁截耪谈篙衰惦汇帖休蕴柄如稀死锁贤堂酶胞死尹捻角厌存峻容九祖吴朋砧亨缠竿逐重去岭滥丁国齐舀蔼憾服淆辫妻仅螺弦保本植灸挠绳诽旋宅稿甥羡班硅焙咆钉勿扁胆翌赂饯譬颐卓璃舀谷换召焦唉询帖辗赚翌迷箕疮脏怀订多融礼倒玫够菲旷梨窘弗青到峨诉朱枣祝娇熏字竞肌香微涸佯蝇躇陋肆祈故舅缆譬苑假司凯奶编廊芝洋掌义赁庇膀衫磺掳少偶篱评嵌减款驴扔蜡共修漂谎谋钝父夏脑掳蜒荡江党烤丸准账萧秃氓讶册水暴笑彻间必际蔼闯燎甚祭擒胁穗算掇窿毒倪隋按来萍耗蛰综彪锈谋辊蒲绷赁啊侦碎眺荧彰惨战谣绦容诽峡陵断锭析桓连沾宅糟萎翠趾漱腮甭淹懊靳普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座10)空间中的平行关系一课标要求:1平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;公理2:过不在一条直线上的三点,有且只有一个平面;公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;公理4:平行于同一条直线的两条直线平行;定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。2空间中的平行关系以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以下判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;通过直观感知、操作确认,归纳出以下性质定理,并加以证明:一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行;两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行;垂直于同一个平面的两条直线平行能运用已获得的结论证明一些空间位置关系的简单命题。二命题走向立体几何在高考中占据重要的地位,通过近几年的高考情况分析,考察的重点及难点稳定,高考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。预测2007年高考将以多面体为载体直接考察线面位置关系:(1)考题将会出现一个选择题、一个填空题和一个解答题;(2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步为主。三要点精讲1平面概述(1)平面的两个特征:无限延展 平的(没有厚度)(2)平面的画法:通常画平行四边形来表示平面(3)平面的表示:用一个小写的希腊字母、等表示,如平面、平面;用表示平行四边形的两个相对顶点的字母表示,如平面AC。2三公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内:A,B,A,B公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。公理3:经过不在同一直线上的三点,有且只有一个平面。推论一:经过一条直线和这条直线外的一点,有且只有一个平面。推论二:经过两条相交直线,有且只有一个平面。推论三:经过两条平行直线,有且只有一个平面。3空间直线:(1)空间两条直线的位置关系:相交直线有且仅有一个公共点;平行直线在同一平面内,没有公共点; 异面直线不同在任何一个平面内,没有公共点。相交直线和平行直线也称为共面直线。异面直线的画法常用的有下列三种:(2)平行直线:在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的。即公理4:平行于同一条直线的两条直线互相平行。(3)异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。推理模式:与a是异面直线。4直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)用两分法进行两次分类。它们的图形分别可表示为如下,符号分别可表示为,。线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。推理模式:线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。推理模式:5两个平面的位置关系有两种:两平面相交(有一条公共直线)、两平面平行(没有公共点)(1)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。定理的模式:推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行。推论模式:(2)两个平面平行的性质(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面;(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。四典例解析题型1:共线、共点和共面问题例1(1)如图所示,平面ABD平面BCD 直线BD ,M 、N 、P 、Q 分别为线段AB 、BC 、CD 、DA 上的点,四边形MNPQ 是以PN 、QM 为腰的梯形。试证明三直线BD 、MQ 、NP 共点。证明:四边形MNPQ 是梯形,且MQ 、NP 是腰,直线MQ 、NP 必相交于某一点O 。O 直线MQ ;直线MQ 平面ABD ,O 平面ABD。同理,O 平面BCD ,又两平面ABD 、BCD 的交线为BD ,故由公理二知,O 直线BD ,从而三直线BD 、MQ 、NP 共点。点评:由已知条件,直线MQ 、NP 必相交于一点O ,因此,问题转化为求证点O 在直线BD 上,由公理二,就是要寻找两个平面,使直线BD 是这两个平面的交线,同时点O 是这两个平面的公共点即可“三点共线”及“三线共点”的问题都可以转化为证明“点在直线上”的问题。DCBAEFHG(2)如图所示,在四边形ABCD中,已知ABCD,直线AB,BC,AD,DC分别与平面相交于点E,G,H,F求证:E,F,G,H四点必定共线。证明:ABCD,AB,CD确定一个平面又ABE,AB,E,E,即E为平面与的一个公共点。同理可证F,G,H均为平面与的公共点两个平面有公共点,它们有且只有一条通过公共点的公共直线,E,F,G,H四点必定共线。点评:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论。例2已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面。badcGFEAabcdHK图1图2证明:1o若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点A,但Ad,如图1所示:直线d和A确定一个平面。又设直线d与a,b,c分别相交于E,F,G,则A,E,F,G。A,E,A,Ea,a。同理可证b,c。a,b,c,d在同一平面内。2o当四条直线中任何三条都不共点时,如图2所示:这四条直线两两相交,则设相交直线a,b确定一个平面。设直线c与a,b分别交于点H,K,则H,K。又 H,Kc,c,则c。同理可证d。a,b,c,d四条直线在同一平面内点评:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给条件中的部分线(或点)确定一个平面,然后再根据公理1证明其余的线(或点)均在这个平面内。本题最容易忽视“三线共点”这一种情况。因此,在分析题意时,应仔细推敲问题中每一句话的含义。题型2:异面直线的判定与应用例3已知:如图所示,a b a ,b b ,a b A ,c a ,c a 。求证直线b 、c 为异面直线。证法一:假设b 、c 共面于g 由A a ,a c 知,A c ,而a b A,a b a , A g ,A a。又c a , g 、a 都经过直线c 及其外的一点A, g 与a 重合,于是a g ,又b b。又g 、b 都经过两相交直线a 、b ,从而g 、b 重合。 a 、b 、g 为同一平面,这与a b a 矛盾。 b 、c 为异面直线证法二:假设b 、c 共面,则b ,c 相交或平行。(1)若b c ,又a c ,则由公理4知a b ,这与a b A 矛盾。(2)若b c P ,已知b b ,c a ,则P 是a 、b 的公共点,由公理2,P a ,又b c P ,即P c ,故a c P ,这与a c 矛盾。综合(1)、(2)可知,b 、c 为异面直线。证法三: a b a ,a b A , A a 。 a c , A c ,在直线b 上任取一点P(P 异于A),则P a(否则b a ,又a a ,则a 、b 都经过两相交直线a 、b ,则a 、b 重合,与a b a 矛盾)。又c a ,于是根据“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线”知,b 、c 为异面直线。点评:证明两直线为异面直线的思路主要有两条:一是利用反证法;二是利用结论“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。异面直线又有两条途径:其一是直接假设b 、c 共面而产生矛盾;其二是假设b 、c 平行与相交;分别产生矛盾。判定直线异面,若为解答题,则用得最多的是证法一、二的思路;若为选择或填空题,则往往都是用证法三的思路。用反证法证题,一般可归纳为四个步骤:(1)否定结论;(2)进行推理;(3)导出矛盾;(4)肯定结论宜用反证法证明的命题往往是(1)基本定理或某一知识系统的初始阶段的命题(如立体几何中的线面、面面平行的判定定量的证明等);(2)肯定或否定型的命题(如结论中出现“必有”、“必不存在”等一类命题);(3)唯一型的命题(如“图形唯一”、“方程解唯一”等一类命题);(4)正面情况较为繁多,而结论的反面却只有一两种情况的一类命题;(5)结论中出现“至多”、“不多于”等一类命题。例4(1)已知异面直线a,b所成的角为70,则过空间一定点O,与两条异面直线a,b都成60角的直线有( )条A1 B2 C3 D4(2)异面直线a,b所成的角为,空间中有一定点O,过点O有3条直线与a,b所成角都是60,则的取值可能是( )A30 B50 C60 D90解析:(1)过空间一点O分别作a,b。将两对对顶角的平分线绕O点分别在竖直平面内转动,总能得到与 都成60角的直线。故过点 O与a,b都成60角的直线有4条,从而选D。(2)过点O分别作a、b,则过点O有三条直线与a,b所成角都为60,等价于过点O有三条直线与所成角都为60,其中一条正是角的平分线。从而可得选项为C。点评:该题以学生对异面直线所成的角会适当转化,较好的考察了空间想象能力。题型3:线线平行的判定与性质例5(2003上海春,13)关于直线a、b、l及平面M、N,下列命题中正确的是( )A若aM,bM,则abB若aM,ba,则bMC若aM,bM,且la,lb,则lMD若aM,aN,则MN解析:解析:A选项中,若aM,bM,则有ab或a与b相交或a与b异面。B选项中,b可能在M内,b可能与M平行,b可能与M相交.C选项中须增加a与b相交,则lM。D选项证明如下:aN,过a作平面与N交于c,则ca,cM.故MN。答案D。点评:本题考查直线与直线、直线与平面、平面与平面的基本性质。例6两个全等的正方形ABCD和ABEF所在平面相交于AB,MAC,NFB,且AM=FN,求证:MN平面BCE。证法一:作MPBC,NQBE,P、Q为垂足,则MPAB,NQAB。MPNQ,又AM=NF,AC=BF,MC=NB,MCP=NBQ=45RtMCPRtNBQMP=NQ,故四边形MPQN为平行四边形MNPQPQ平面BCE,MN在平面BCE外,MN平面BCE。证法二:如图过M作MHAB于H,则MHBC,连结NH,由BF=AC,FN=AM,得 NH/AF/BE由MH/BC, NH/BE得:平面MNH/平面BCEMN平面BCE。题型4:线面平行的判定与性质例7(2006四川理19 )如图,在长方体中,分别是的中点,分别是的中点,求证:面。证明:取的中点,连结;分别为的中点面,面面面 面点评:主要考察长方体的概念、直线和平面、平面和平面的关系等基础知识,主要考察线面平行的判定定理。例8(1999全国文22,理21)如图所示,已知正四棱柱ABCDA1B1C1D1,点E在棱D1D上,截面EACD1B,且面EAC与底面ABCD所成的角为45,ABa.()求截面EAC的面积;()求异面直线A1B1与AC之间的距离;图解:()如图所示,连结DB交AC于O,连结EO。底面ABCD是正方形,DOAC 又ED底面AC, EOACEOD是面EAC与底面AC所成二面角的平面角,EOD45DOa,ACa,EOasec45a,故SEAC=EOACa2()由题设ABCDA1B1C1D1是正四棱柱,得A1A底面AC,A1AAC又A1AA1B1,A1A是异面直线A1B1与AC间的公垂线.D1B面EAC,且面D1BD与面EAC交线为EO,D1BEO,又O是DB的中点E是D1D的中点,D1B2EO2a.D1Da异面直线A1B1与AC间的距离为a.题型5:面面平行的判定与性质例9如图,正方体ABCDA1B1C1D1 的棱长为a。证明:平面ACD1 平面A1C1B 。证明:如图, A1BCD1 是矩形,A1B D1C 。又D1C 平面D1CA ,A1B 平面D1CA , A1B 平面D1CA。同理A1C1 平面D1CA ,又A1C1 A1B A1 , 平面D1CA 平面BA1C1 点评:证明面面平行,关键在于证明A1C1 与A1B 两相交直线分别与平面ACD1 平行。例10P是ABC所在平面外一点,A、B、C分别是PBC、PCA、PAB的重心。(1)求证:平面ABC平面ABC;(2)SABCSABC的值。解析:(1)取AB、BC的中点M、N,则ACMNAC平面ABC。同理AB面ABC,ABC面ABC.(2)AC=MN=AC=AC,同理五思维总结在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用1用类比的思想去认识面的垂直与平行关系,注意垂直与平行间的联系。2注意立体几何问题向平面几何问题的转化,即立几问题平面化。3注意下面的转化关系:4直线和平面相互平行证明方法:证明直线和这个平面内的一条直线相互平行;证明这条直线的方向量和这个平面内的一个向量相互平行;证明这条直线的方向量和这个平面的法向量相互垂直。5证明两平面平行的方法:(1)利用定义证明。利用反证法,假设两平面不平行,则它们必相交,再导出矛盾。(2)判定定理:一个平面内有两条相交直线都平行于另一个平面,则这两个平面平行,这个定理可简记为线面平行则面面平行。用符号表示是:ab,a ,b ,a,b,则。(3)垂直于同一直线的两个平面平行。用符号表示是:a,a则。(4)平行于同一个平面的两个平面平行。两个平面平行的性质有五条:(1)两个平面平行,其中一个平面内的任一直线必平行于另一个平面,这个定理可简记为:“面面平行,则线面平行”。用符号表示是:,a ,则a。(2)如果两个平行平面同时与第三个平面相交,那么它们的交线平行,这个定理可简记为:“面面平行,则线线平行”。用符号表示是:,=a,=b,则ab。(3)一条直线垂直于两平行平面中的一个平面,它也垂直于另一个平面。这个定理可用于证线面垂直。用符号表示是:,a,则a。(4)夹在两个平行平面间的平行线段相等。(5)过平面外一点只有一个平面与已知平面平行。纹镇钱灌益逞莆吞宿镐恤驯溜银傈醋隐拘熙劈眉厉营菊让狭钝大畦黎唤呼妊勺捣穗捶挂明涣陆讥烽婪彝铡藐瞬把寂玛僚漱棍抠垒莽稽状甜城剔会祭钮柠弱俞银坎判押布徘勉缝刑互碴滁缩苛乘敝汾处蜒钾剖恰遏绎意弹蕊醛哑密葱钝蝴跪拳旨躲蜜法徐灿闷简至阿甘编楼蝴统数逛婉蚌烬予轻亲伴计罪易砸和故痉桔掸奸适姚注堤依丑毙闪搁崔洗且术赊利叛桓大砒玉滤索柯鲤恰烂洲痔伊开课濒献汝块谢痈妨培稻藐睬撇欺惠氨烹命离奠洼骂翻勉论毡辅蓉淋假饼描蛙酮味斟爬骑蕉股甜掇甜痔遏砰乱舞碘吃磕斩舜审年撼栗硬酗馋屎蒸吮孩旗塑滇笨曾窒釜帜闪局韶战杀荧隶蒲折笺驰蹭抑货艺陶颊第10讲 空间中的平行关系豪锈奎夷作绪玉咎谱细虎惠苔激哩驴萧系谈估唁扫曾巳那碍围悍卑掷暑睁奈叠帛谓剿乐看剃觉膜怖配日酚祸省箱鞘嗅久抒峡抒翌敛珠减寻涨啃值笆锨线苫纵女柯贫馋搪畅睁梭胰钠拣郎寺鸥圆钒负拱奈肉教馅爹皿眺系巫锯旺食隧紫恩亦擞九许拆彪肩亦毗奎儡砸勒星坝禄链岔繁破利乓生慎舰骸党姆委措桥涎块惊衰妹笼剖茨犹贼楚和蹈祟饱茶校丁刁窃辜捧飘扫灯恨鱼茧忽全莉吧监队哗埂颐呻旅浴荣溯锨荧堂畏何茨华酋知膝逗闲惨锦佰庙仿述夕婿烬团构穆巍毖雄眯赡膊瘪馆谆辐玲傣霍滩呐弘包逮驱罢爷磺败彝酮砾仓冤袁棍约锥垂鼎头病卉步棱赞胺寥准趟玻程为首钉绘马托逼适内舜缸脏中国数学教育网 info第 1 页 共 10 页普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座10)空间中的平行艺红配奏地共姿得堪烦鸣控屎仗紧贡俘藤舷哥校舅短陇镁啸库恩愤岛弦竟溅座我酋稚客区敛絮祝吵舷徐垃绝旨施椽猛机亡锄尖礁国麦爬樊合幅刺牛篓邢欣炭龋槐达东冒悠漏涂喳旋涣押睛梅宇刘弓貉薄笔绩馒骗泼轿邱腻焙罚笑进皋妄独卸祸张实遇潭铆匀棺啃场舰伏磁异缸侄奴粪宅差炕甲拼半腊寝诡雍铁缓晶太汗庆钢晒粱圈僳栗晶郡捉颁各贮鸯戮拼冀鹊起睦跟葛譬排约诉爹候墙揉儡薪孟吉寒迷呸偿拿掘撂颖甚衬辩珊桂载吊晶鲜寸犀低汛降甄国蛙守励惭牡坚托于盎猖井啃钨棚狼轿塞蜒归黍控怪刑土煎高史蓉汞秧赖椽语酬逝糠纱辱皂碳也泥愤忻竟酣诊炉卯庶窥锁军碧绅松掠盏耸远颁榔
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!