资源描述
毕业设计说明书题目:直列四缸柴油机配气机构的设计 毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 兰州工业高等专科学校毕业设计(论文)任务书 交通工程 系 2012 届 汽车检测与维修 专业毕业设计(论文)任务书毕业设计(论文)题目直列四缸柴油机配气机构设计课题内容性质工程设计课题来源性质教师收集的结合生产实际的课题/学生自立课题设计校内(外)指导教师职 称工作单位及部门联系方式副教授兰州工业高等专科学校交通工程系一、 题目说明(目的和意义):毕业设计是一个综合性较强的实践环节,是对学生三年的学习效果的检验。本题目要求学生完成柴油发动机配气机构的设计。通过该题目的设计加强学生对相关知识的深入了解并锻炼学生的机构设计的动手能力。通过毕业设计,学生应达到以下基本要求:1、具有综合应用所学理论知识和实践技能,初步解决本专业范围内的工程技术问题的能力,善于应用新技术、新工艺、新材料。2、具有查阅科技文献资料、使用各种标准、手册以及独立工作、创新的能力。3、综合考核学生掌握知识的广度和深度、运用知识处理问题的能力、实验能力、外语应用水平、计算机应用水平、科技写作能力、口头表达能力等。二、设计(论文)要求(工作量、内容):设计内容:以某一车型柴油机的相关参数作为参考,对直列四缸柴油机的配气机构的主要零部件进行结构设计。 完成内容:1气门组装配图1张(1号图)。2气门传动组装配图1张(1号图)。3零件图4设计计算说明书1份三、进度表日 期内 容2011年11月(秋季学期第15周)开始2012.3.(春季学期第2周)结束根据毕业设计任务,收集、阅读整理有关资料调查研究、分析课题与毕业实习 (0.5周)气门组设计 (2.5周)气门传动组设计 (2.0周)撰写设计说明书 (1.0周)完成日期2012年1月答辩日期2012年3月 四、主要参考文献、资料、设备和实习地点及翻译工作量:(一)、参考文献:1高秀华内燃机M北京:化学工业出版社,200592杨连生内燃机设计M北京:中国农业机械出版社,198063汽车工程手册编委会汽车工程手册:设计篇M北京:人民交通出版社,200154陈家瑞汽车构造M北京:人民交通出版社,200945束永平汽车发动机曲柄连杆机构动力学分析J东华大学学报,2005126周松鹤工程力学(教程篇)M北京:机械工业出版社200327石津俊发动机曲轴弯曲疲劳强度的可靠性分析J武汉工学院学报,200578王东华曲轴强度计算若干问题的探讨J天津大学学报,200239夏 天捷达王与都市先锋轿车维修手册M北京:北京理工大学出版社,200110 指导教师签字教研室主任签字主管系领导签字年 月 日年 月 日年 月 日注:本任务书要求一式两份,一份系部留存,一份报教务处实践教学科。 直列四缸柴油机配气机构设计摘要气门配气机构是四冲程柴油机所特有的机构,它是按照发动机的点火次序和各缸工作循环的要求,定时开启和关闭进、排气门,完成换气过程。因此配气机构要满足:进、排气的定时和准确;气门关闭要严密可靠;气流阻力要小;结构简单拆装方便。 气门配气机构由气门组、气门传动组、凸轮轴传动机构三部分组成。气门组主要由:气门、阀座、气门导管、气门弹簧和连接键组成,195B型柴油机采用不带阀壳的气门组气门的开启和关闭是靠传动机构来实现的,传动机构可分为机械和液压传动机构。195B型柴油机采用下置式传动形式,由凸轮、挺柱、推杆、摇臂、摇臂座、摇臂轴、调整螺钉等组成。凸轮轴与曲轴之间的传动机构与柴油机的型式、凸轮轴与曲轴的相对位置、气门传动机构的型式等有关,一般有齿轮传动和链传动。195B型柴油机采用齿轮传动,柴油机曲轴与凸轮轴的传动比为2:1.配气机构控制发动机进排气过程,直接影响着发动机的性能,是衡量发动机可靠性的指标之一.关键词:柴油机;配气机构;凸轮型线ABSTRACTThe valve train is one of the most important mechanisms in a internal combustion engine, whether the performances are good or bad, that affecting the power performance, economic performance, emissions performance of the engine, as well as affecting the reliability and wear performances of the whole engine. Along with the requests of the engines high power, super-speed, people demand a higher index. That is, when the engine runs under a high speed, it can still work steadily and dependably, which demand that the valve train system should have a high performance. Cam profile is the hard core of the valve train, which design is one of the important ways to carry out valve train optimal design. Simulation calculation and experimentation research are two important ways to carry out research and development on valve train of internal-combustion engine.Key words: Diesel engine; Valve train; Cam profile直列四缸柴油机配气机构设计概述1.配齐机构的简介: 配气机构是发动机的重要组成部分。它的功能是实现换气过程,即根据气缸的工作次序,定时地开启和关闭进、排气门,以保证气缸吸入新鲜空气和排除燃烧废气。一台内燃机的经济性能是否优越,动力性是否足够大,工作是否可靠,噪音与振动能否控制在较低的限度,常常与其配气机构设计是否合理有密切关系。配气机构设计的优劣不仅影响发动机的结构紧凑性和制造、使用的成本,而且还决定了高速运转时柴油机的工作可靠性、耐久性。配气机构设计的好坏对柴油机的性能指标有着很重要的影响。配气机构的功用是按照发动机每一气缸内所进行的工作循环和发火次序的要求,定时开启和关闭进、排气门,使新鲜充量得以及时进入气缸,而废气得以及时从气缸排出。新鲜充量充满气缸的程度用充量系数来表示。充量系数越高,表明进入气缸内的新鲜空气或可燃混合气的质量越多,发动机发出的功率越大。压力越高,温度越低,则一定容积的气体质量越大,因此充量系数越高。由于在实际工作中,压力,温度都有不利因素,所以充量系数总是小于1,一般在0.80.9。就配气机构而言,主要是要求其结构有利于减小进气和排气的阻力,而且进、排气门的开启时刻和持续开启时间比较适当,使进气和排气都尽可能充分。一般说来,设计合理的配气机构应具有良好的换气性能,进气充分,排气彻底,即具有较大的时间-断面值,泵气量损失小,配气正时恰当。与此同时,配气机构还应具有良好的动力性能,工作时运动平稳,振动和噪音较小,不发生强烈的冲击磨损等现象,这就要求配气机构的从动件具有良好的运动加速度变化规律,以及不太大的正、负加速度值。例如,对气门通过能力的要求,实际上可理解为是对由凸轮外形所决定的气门位移规律的要求。显然,气门开闭迅速就能增大时面值,但这将导致气门机构运动件的加速度和惯性负荷增大,冲击、振动加剧,机构动力特性变差。因此,对气门通过能力的要求与对机构动力特性的要求之间存在一定矛盾,应视所设计发动机的特点,如发动机工作转速、性能要求、配气机构系统刚度大小等,在凸轮外形设计中兼顾解决。配气机构的结构形式是多种多样的,四行程发动机广泛地采用气门式配气机构。气门式配气机构可从不同角度分类。按气门的布置形式不同,主要有气门顶置式和气门侧置式;顶置气门式的配气机构又可根据凸轮轴的布置位置及凸轮轴数目的不同分为凸轮轴下置式、凸轮轴中置式和凸轮轴上置式。侧置气门式配气机构的进、排气门设置在气缸体的一侧。气门不但是气体流动的通道,而且是燃烧室的组成部分,这种燃烧室只适应于早期低压缩比内燃机。它不紧凑,单位燃烧室体积的表面积大,燃烧室散热面积大,热损失多。此外,进、排气道由于气门侧置拐弯增多,进、排气阻力大,但结构简单,目前只用于廉价小功率汽油机。为减少进、排气流通阻力,改进换气性能,将低压缩比燃烧室变为高压缩比燃烧室,以提高燃烧热效率和降低热损失;将气门从气缸体上移到气缸盖上,因而出现了顶置气门式的配气机构,大大的改善了内燃机的动力型和经济性而广泛采用在现代内燃机上。2. 2、配气机构的要求: 对于一个正常工作的配气机构应该具有如下的要求:1 进、排气门的时间足够大,泵气量损失小,配气正时恰当,在排气过程中能较好的排出废气,进气过程中能吸入较多的新鲜空气,因而使发动机具有较高的充量系数和合适的扭矩特性。2 振动、噪声较小,并且工作可靠和耐磨。3 结构简单、紧凑。4 为了减轻惯性负荷,使配气机构运动零件的质量减到最小。 3、 配气机构设计的计算参数确定: 从确定气门座处的通过截面以及确定喉口流通截面开始。气阀处的流通截面积可以根据气体不可压缩连续流动的条件确定,也即在额定转速I情况,气门最大升程时,按气门座截面处假设的平均速度来确定。已知:气缸直径D=95, 气道喉口的最大直径,在气缸直径D处,配气机构的结构方案以及燃烧室的形式都已给定的情况下,气门布置在气缸上可能性的限制。进气门的数值应大于下列规定的范围: 采用气门顶置式:, 则可以得到:, 根据柴油机的195B的结构,选择=36mm,排气门的气道喉口的直径,通常取得比进气门的气道喉口直径小10%20%,气阀升程h时,某研究瞬间具有圆锥密封面之气门的流通截面为: 式中a气门头斜面角(现代发动机上,a=45度); 气门的升程,它的取值一般是气门头的25%左右,气门头的直径是40.mm,则: =10mm所以: = =10(35*COS45+10*Sin45*Cos45) =865 mm对进行校核: Frop=(1.11.2)Fxn=(1.11.2)x865=(951.51038) 取1000mm喉口的直径为:= x10 =36mm 喉口的直径经过检验取值正确。配气机构的零件和组件的设计 一、凸轮轴的设计1、 凸轮轴设计的要求: 1)正确的设计进排气凸轮的位置,实现配气正时,使柴油机正确的按照一定规律运转。 2)从柴油机的总体布局来设计凸轮的允许弯曲变形,合理的计算出支撑它的轴颈数目,轴颈的直径、和凸轮轴的最小直径尺寸。 3)选择合理的材料和热处理工艺,使它不仅有足够的刚度与韧性,而且要使凸轮和支撑轴的表面有合理的硬度,具有较好的耐磨性。2、 凸轮轴的结构: 195B柴油机是小功率柴油机,可以采用整体式凸轮轴,它的结构较紧凑,这种结构都是将凸轮轴从机体一端插入的,所以将它的两个支撑轴颈加工的尺寸大小是不同,前端的支撑轴颈尺寸大,后端的小些,而且前端轴颈的尺寸必须大于凸轮轴的高度,这样便于安装。轴颈上安装滑动轴承。3、 凸轮轴支承轴颈的数目: 由于该柴油机是单缸四冲程发动机,不需要将支承轴颈设计的过多,只是将凸轮轴的前后端各设计一个就已经足够了,所以将该轴颈数目为2个。4、 凸轮轴的选材: 因为凸轮轴要承受一定的机械强度,必须要有足够的强度和韧性,同时还应具有一定的耐磨性,才能让发动机在正常的工况下工作,选择碳钢,一般选择45钢就可以满足要求了。5、 凸轮轴的支承轴颈轴承的材料: 195B柴油机经过查表得知,采用铁基粉末冶金,它是将它直接安装在凸轮轴轴承座孔内,它的型号:19501018 内径外径宽度前端404727后端2835266、 凸轮轴的定位方式: 定位的原因:由于汽车的上下坡或者在加速的时候,都可能使凸轮轴发生轴向窜动。为防止由此引起的对配气定时的不良影响,需要采用轴向定位措施。对也195B型柴油机的采用的是轴向定位方式。7、 凸轮轴的最小直径确定: 凸轮轴的最小尺寸可以按照下面的公式:Db=2Ro(24)(mm) 上式中的Ro是凸轮的基圆半径,由表可知:Ro=14.5 Db=2Ro(24) =2x14.5(24)=(2527)当转速较高时,支承轴颈间距离较大、凸轮上受力较大时取上限值。 凸轮轴支承轴颈与轴承孔德径向间隙一般在0.020.03mm,范围内,轴向间隙为0.010.25mm。8、凸轮轴的热处理工艺: a 渗碳; b 渗碳; c 机械加工; d 高频淬火(回火); f 机械加工;9、凸轮轴的损坏形式: (1)支承轴颈的磨损。 (2)凸轮表面的磨损、刮伤和点蚀。10、凸轮轴的计算: 根据气门弹簧和配气的计算的:配气机构运动零件的质量Mkn=115g, Mn=75g Mr=0/ Mmr=0和Mn=120g,凸轮的尺寸Ro=14.5mm,R1=138 R2=8.3mm Htmax=7mm 摇臂的尺寸:Lr=46 L=32 凸轮轴的角速度=115rad/s弹簧的最小弹力是P=239牛顿,进气门的喉口直径d=36mm。 从排气门作用到凸轮上的最大的力为:Prmax=+/4(Pr)Ln/Lr+Mr(r1r2) =239+3.14*/4x(0.4450.1)xx46/32+374xx(13814.5)x=2539牛顿注: 式中的=36mm 为排气门的直径 =42mm为进气门的直径 0.445兆帕,是由指示功图而确定 =0.1兆帕 Mr=(+/3)x(/+99=374g =/3=120x/3x=81g凸轮轴的弯曲量: Y=0.8 =0.0003mm式中 E=2.2*兆帕钢的弹性模量; L=a+b=26+70=96mm-凸轮轴跨距长度根据结构总体布置来取: -轴的外径轴的外径,选取时要考虑利用轴的外径向凸轮供给润滑油和保持轴要具有足够的刚度。 挤压应力: =0.418 =255兆帕 式中 : =25mm凸轮的宽度二、凸轮的设计虽然瞬时的打开和关闭气门能够获得最大的时间截面,但是这样做会使零件产生很大的惯性力。因此在设计配气机构时选用这样的凸轮型线,使它保证可以有足够的气缸冲量的同时,同时也保证运动零件的惯性力数值在允许的范围内。1、凸轮的设计时应该满足以下的要求:1) 具有合适的配气相位。它能照顾到发动机功率、扭矩、转速、燃油消耗量、怠速工况和启动等各方面的性能要求。2) 为使发动机具有良好的充气性能,因而时间面积值应尽可能大些。3) 加速度不宜过大,并应连续变化。4) 具有恰当的气门落座速度,以免气门和气门座的过度磨损和损坏。5) 应使配气机构在所有工作转速范围内都在平稳工作,不产生脱离现象和过大的振动。6) 工作时噪声较小。7) 应使气门弹簧产生共振的倾向达到最小程度。8) 应使配气机构各传动零件受力和磨损较小,工作可靠,使用期长。 上述这些要求往往相互矛盾,必须根据发动机的具体情况要求,抓住主要矛盾,协调各种因素,妥善解决。凸轮线性通常根据所选的线型形成规律做出,这样保证制造比较简单的凸轮线形。2、凸轮的基圆设计: 凸轮型线从基圆开始绘制,从保证配气机构有足够刚性的条件出发选择它的基圆半径R,其值在R=(1.52.5)x 范围。1 基圆半径:R=(1.52.5)x10=1525 对与195B柴油机取14.5mm。 105B柴油机的配气相位角,根据手册可以得到:进气提前角进气滞后角排气提前角排气滞后角2 凸轮的布置:(进排气的夹角) =90+1/4(47-21+49-19) =1043 配气相位与凸轮的作用角: =0.5(180 式中分别为进排气的提前开启角、进排气的滞后关闭角。 =0.5(180 = =4 凸轮顶部的圆弧半径: = =14.5 =8.3 = =138 为了保证气门的间隙,凸轮的背面部分的半径加工的比小一个间隙 值中包括了配气机构的温度间隙及弹性变形量。对于进气=(0.250.35)mm,而排气门则=(0.350.50)mm。半径为r的圆与半径为r1的圆弧或者与直线(r1=)的接合,可以按抛物线或者按某给定半径的圆弧连接。三、挺柱的设计1、挺柱的结构: 挺柱的功能是按凸轮的运动规律推动传动机构,同时承受凸轮的侧向压力。特别是挺柱的底面,由于和凸轮表面接触的面积很小,接触应力很大,表面磨损很大,甚至可能刮伤,因此挺柱侧面以及底面要求耐磨。形状是筒型,这种结构可以减轻它的质量,从而达到减小它的往复惯性力。它的这种结构同时也保证凸轮轴在旋转时,挺柱底面所受的偏心切向力使挺柱产生旋转运动,保证工作表面的磨损时很均匀的挺柱的轴线相对于凸轮的轴线的偏移量为13,而195B柴油机的偏移量为2mm。对于195B柴油机采用的是平面挺柱,它的特点是结构简单,质量轻。对于高速发动机也是比较适合的。2、挺柱的材料: 挺柱的材料一般用的是低碳钢底部堆焊合金,或者铸铁底部采用冷激,或球墨铸铁制造,其摩擦表面应经过热处理提高硬度后精磨。挺柱的材料和底面的硬度是和凸轮轴材质及凸轮表面的硬度相匹配的。对与295B柴油机的是20钢制造,底部堆焊合金,热处理的硬度HBC55。凸轮轴的材料为45钢,凸轮表面淬火处后,硬度为BRC5465。3、 平面挺柱导向面与导向孔之间的挤压应力的计算: 最大挤压应力按下式计算: 上式中:挺柱导向面直径(mm); L在凸轮的计算位置是,挺柱插入导向孔中的长度(mm); 作用在凸轮上的最大力矩 = =39.36 4、平面挺柱的最大速度: 平面挺柱的最大速度受限于挺柱端面的直径,依据平面挺柱的凸轮机构运动学可知,挺柱与凸轮的接触点偏移量e与挺柱的速度成正比: 因此,如挺柱端面直径, 由发动机的总体布置决定,则确定挺柱的最大速度(时,必须保证凸轮与平面挺柱不产生干涉,为此满足 5、 凸轮与挺柱间接触应力的计算: 平面挺柱接触应力的计算: 式中: F 作用在凸轮上的力(kgf); 凸轮廓线瞬时曲率半径(mm); B凸轮与挺柱底面间的接触线宽度(mm); 分别为凸轮材料与挺柱所用材料的泊松比; 分别为凸轮材料与挺柱所用材料的弹性模量(kgf/mm)以上或当使用的材料为铸铁可取做0.27,材料为钢材是取0.30。弹性模量经过查表可知:碳钢:2.0x(kgf/) 如使并将此值代入公式中则可以简化: 5.67x6、 挺柱的导向面直径 与长度按照下面的公式确定: =(0.150.20)D (mm) =(0.150.20)*95 =(14.2519) 取 16mm 式中 D气缸直径(mm) =(3.03.5) (mm) =(3.03.5)*16 =(4859)mm 根据195的结构取=58mm 挺柱的导向面直径与挺柱孔间的径向间隙一般在0.020.08mm的范围内。7、 挺柱头部球面支座的设计: 挺柱头部加工有凹形的球面支座,它是支撑推杆球头的。在这种球头与球面支座的配合副中,为了再两者之间形成楔形油膜,球面支座半径应比推杆的球头半径略大,但与也不应相差过大,否则将使接触应力剧增,一般,如图: 8、 凸轮和挺柱的主要损坏形式及其预防:一、表面刮伤 刮伤的原因:由于凸轮和挺柱让润滑情况恶化引起的。 防止的方法:1、改善润滑:(1)保证在凸轮与挺柱面之间经常供给黏度、成分、温度和数量均匀合适的润滑油;(2)采用具有特殊添加剂的润滑油;(3)使凸轮与挺柱的接触面光洁度尽可能的高一些;2、降低接触应力:(1)尽量减轻配气机构的往复运动质量;(2)增加凸轮的刚度;(3)采用弹性模量较小的但有较高硬度和强度的金属作为凸轮和挺柱的材料。3、表面磷化处理。4、凸轮、挺柱的化学成分及其金相组织的选择适当。5、采用热导性好的材料。2、 表面蚀点 发生的主要原因:点蚀是金属的疲劳过程。 预防的措施:1、改善润滑;2、降低接触应力;3、降低残余应力;4、材料的化学成分和金相组织;4、采用热导性好的材料6、材料内部应尽量减少气泡。夹渣等缺陷。7、提高材料的抗疲劳强度和抗腐蚀能力。3、 表面磨损 凸轮磨损有两种情况:(1)是一个缓慢的抛光过程,最后形成一个硬而光滑的摩擦表面。这种抛光的过程常开始于凸轮廓线的加速度为零的位置,而止于凸轮廓线的顶端之前,顶端不会被磨平。(2)随着时间加长会迅速磨损下去,直至影响发动机的性能。不正常的迅速磨损,严重者则在几个小时内即可将凸轮定磨平。四、推杆的设计1、推杆的功能: 把凸轮的运动从凸轮轴传至顶置气门处,完成发动机的配气。2、推杆的材料: 45钢。3、推杆的结构形式:推杆是一个细长杆,在工作时容易发生纵向弯曲,它是配气机构中刚度薄弱的环节。在195B型柴油机上是采用冷拔无缝钢管(或铝制空心管)制造。采用冷拔无缝钢管可减轻它的质量,减小往复惯性力。此外,缩短推杆的长度是减轻质量,提高纵向弯曲应力和整个配气机构刚度的有效办法。二、 尺寸设计: 根据195B柴油机的结构,它的长度设计为291mm ,外径9mm,球头半径4.5mm。才可以满足其要求。三、 推杆稳定性安全系数的确定 推杆的纵向弯曲按下列计算: = kgf式中:P作用于推杆上的临界力; E推杆材料的弹性模量; J推杆中央横断面的惯性力; 推杆的外径 空心推杆的孔径 L推杆的长度 =2.5 x/4 式中 作用在推杆上的最大作用力 对于各种用途的发动机,在如下的范围: (1)、高功率轻型发动机,=2.53 (2)、汽车拖拉机发动机。高速船用发动机,=35 (3)、固定式和船用发动机=46四、 推杆球头与挺柱球面支座,推杆球头与摇臂调节螺钉球面支座间接触应力的计算: 接触应力按下面的公式计算: = 180 式中 作用于推杆上的最大作用力(kgf) Em 挺柱与推杆两种材料的平均弹量 推杆的球头半径(mm) 挺柱球面支座的半径(mm)对于各种用途发动机的许用接触应力如下: (1)汽车拖拉机发动机,=150200(2)固定式和船用发动机,=100120五、摇臂的设计1、摇臂的工作原理: 摇臂是推杆和气门之间的传动件,它是推杆传来的力改变方向后作用于气门尾部以推开气门。 2、摇臂的结构:摇臂的几何尺寸决定于气门和凸轮轴的相对位置。为了获得较轻的质量刚性好的结构,往往才有T字型的或者I字型的断面。195B柴油机采用的就是T字型摇臂断面。3、摇臂比: 摇臂有长、短臂之分,长短之比成为摇臂比,其值在1.6左右。长臂推动气门的杆端,短臂端的螺孔中装有气门间隙调节螺钉和锁紧螺母,气门间隙调节螺钉的球头与推杆上端的凹球端头接触,195B柴油机的摇臂比:46/32=1.43。4、摇臂润滑: 摇臂依靠摇臂轴支撑在摇臂支座上,摇臂钻有油孔,摇臂轴为中空型,机油由支座油道经摇臂轴内腔润滑到摇臂的衬套,然后从摇臂上油道上流出,滴落在摇臂两端进行润滑。5、摇臂的定位:摇臂轴上两摇臂间装有摇臂弹簧,防止摇臂轴向窜动,从而保证各摇臂相对气门杆的确定位置。在195B柴油机上,采用的是用摇臂支座将两个摇臂分开,并且在两边缘处用卡簧将其锁紧。6、摇臂的材料: 所采用的材料是QT602摇臂在与气门的尾部接触时既有滚动又有滑动,所以对材料的要求是要耐磨,为了防止磨损影响正常的配气相位,故该表面要求淬火热处理的工艺。7、摇臂与气门杆顶面间接触应力的计算: 式中 气门杆顶面上的最大作用力(kgf); R摇臂敲击部分的球面半径(mm); 摇臂与气门顶面间的许用接触应力:。摇臂断面A-A中的总应力为: (如图) =400 式中 气门上的最大作用力; 气门侧摇臂计算断面的断面模数; 气门侧摇臂断面的面积; A1从计算断面重心到作用力的垂直距离 A2作用力的垂直线与计算断面A-A的夹角;断面B_B中的总应力: =420式中 气门上的最大作用力; 气门侧摇臂计算断面的断面模数; 气门侧摇臂断面的面积; A1从计算断面重心到作用力的垂直距离 A2作用力的垂直线与计算断面A-A的夹角; 上述应力的许用值如下: (1)铸铁: (2)锻造碳钢: (3)锻造合金钢: (4) 铸钢: (5)轻合金:对于195B柴油机选择(4)式中的。六、气门组的设计一、气门的设计:1、 气门设计的基本要求:1 材料方面: 气门的工作温度是确定气门材料的主要因素。在气门工作温度范围内材料应具有足够的强度。韧性和表面硬度。由于排气呢锥面磨损常为腐蚀磨损,因此在选择材料时候必须考虑化学腐蚀(主要是硫和磷)的性能。进气门锥面多属磨损摩擦,因此进气门侧重耐磨。2 机构方面:要求结构简单、加工方便,且颈部形状也要恰当,以便减少气体的流动阻力,增加其进气冲量。在保证足够的强度、刚度和耐磨性的前提下的重量选择。3 尽可能的降低热负荷,是气门设计的一个重要方面。排气门是气门组中 的高温零件,气门头部75%左右的热量经气门座导出,25%的热量经气门导管导出,因此,气门的设计应与气缸盖的设计密切配合,气门座周围必须加强冷剂,并使温度尽量均匀。此外,如结构允许,尽量增加导管的长度,适当减小气门杆与导管的间隙,以减低气门的温度。4 气门室配气机构从凸轮开始的整个运动链中的末端零件。它的运动受到凸轮廓线、挺柱、摇臂、气门弹簧等零件特性的制约,因此气门的设计还必须从整个配气结构来考虑分析,要避免气门在落座时承受过大的冲击和振动,因为在这些机械负荷也是造成气门及气门座磨损的原因之一。2、气门的工作条件分析: 气门室发动机的重要零件之一。工作时需要承受较高的机械负荷和热负荷,尤其是排气门,由于经常高温燃气的冲刷,因而易于产生漏气。腐蚀与烧损等现象,工作条件也更为严酷。气门工作时承受落座冲击负荷及燃气压力给以的静负荷,这种静负荷一般在4左右,而冲击负荷一般为11.6左右;气门的工作温度:进气门约为200450度,而排气门则可达650850度,甚至更高,下面是195 B柴油机的排气门的温度场。3、 气门材料的选择: 气门材料的选择必须考利到它的工作温度、腐蚀、冲击载荷以及气门杆部与端面的耐磨等因素。而且进、排气门的对材料的要求也是不同。因为进气门的温度要低一些,排气门的温度要高些。就195B发动机的选材:进气门的材料用40Cr;排气门的材料用40Cr9Si2。气门选择材料的方法:(1)马氏体钢 一般气门中采用铁素体合金钢,含碳量在0.350.80%之间,经淬火后可得到马氏体组织以上耐磨的要求,这种材料的机械性能加工性好,滑动性好,在工作温度超过650的排气门上广泛应用,如4crsi2.、4Cr10Si2Mn等。但在强化程度较高的发动机上,由于热负荷和机械负荷高,因而对气门锥面的耐磨、耐腐蚀性能提出更高的要求,这时,可采用堆焊气门,这是一种头部采用奥氏体钢,杆部采用马氏体钢的气门。可用摩擦焊或闪光焊来堆焊。堆焊气门设计的关键是正确地焊接部位。应从以下两个方面来考虑:1)界面处应在气门头部应力区之外并离颈部顶圆弧中点附近的热点较远;2)耐热性较差的杆部材料不要受到高温燃气的侵蚀;焊接的部位以选在气门全开时界面与导管下端相齐或略高为宜。(2) 奥氏体钢 这类钢在常温和工作温度下基本上全是奥氏体组织,不能淬硬。它的高温强度好,耐腐蚀性好、奥氏体钢用做高功率柴油机的排气门,其最高工作温度允许达870。国产奥氏体钢4Cr14NiW2Mo广泛用作机车和大型载重汽车的柴油机排气门。国产常用气门钢的化学成分以及机械性能见下表:气门刚化学成分气门刚机械性能气门刚参数性能除表列的气门钢之外,我国还试制了新的气门钢种,如TF3,奥氏体钢,这种钢在机械性能和耐磨性能方面超过了4Cr10Si2Mn从而逐步形成了国产排气门钢系列。 当气门锥面仅耐磨蚀及耐磨性不能满足需要时可采用堆焊。堆焊钱先把气门锥面加工出半圆形环槽,槽的深度由实验选定,注意不要过分削弱气门本体强度,然后再堆焊金属焊上。焊接方法有手工焊、等离子焊高频冷凝焊等。为了使奥氏体钢气门杆端面耐磨也可采用堆焊或焊上一小段马氏体钢。用作柴油机排气门和增压柴油机进气门堆焊的材料,目前多数用的是钻基硬质合金,其材料成分:气门堆焊材料4、气门头的设计: (1)气门头部的形状: 气门头部的形状除了影响气体的流通特性之外,还会影响到气门的刚度、重量、导热性能以及制造成本等,同时也关系到气门的使用期限。因此根据不同发动机的不同情况进行具体的分析,然后确定合理的方法。根据195B柴油发动机的结构采用平底型气门。因为这种气门的结构简单、工艺性好、受热面小,具有一定的刚度,基本上式满足进排去的要求。这种型号在各类柴油机得到了广泛的运用。下图是平底型气门的示意图: (2)气门头部的直径: 增大进、排气流通截面是减少进、排气阻力,提高进气量的途径,同时气门头部直径的选择还要考虑到燃烧室的形状,气缸盖进、排气门的布置,气道之间冷却水套的设计以及气门受热和冷却的均匀性等因素。综上的条件195B柴油发动机的进、排气门的直径42和36mm。(3)气门锥面斜角: 在气门开启初期及接近关闭时,气门锥面斜角的大小对于气体的流通断面有较大的影响。这时的流通断面大致与斜角的余弦成正比。此外,气门与气门座之间的单位压力随斜角的增加而增大,而气门与气门座之间的相对滑移则随斜角的减小人减小,因此气门的确定必须根据发动机的综合情况而定,对于195柴油发动机的气门斜角都是度。()气门头部厚度及锥面宽度:气门头部厚度的设计,主要是从气门的刚度来考虑,气门在燃烧压力的作用下会引起变形,变形过大会使气门的密封性下降,锥面磨损加剧。由于头部厚度对气门的刚度影响比颈部圆弧要大得多,因此当需要增加气门刚度时首先考虑增加头部的厚度。如果还受到气门质量的限制,则常用适当减小颈部圆弧半径来得到弥补。厚度与气门头部的外径有一定的比例,一般()(是气门头部的直径)柴油机的头部厚度:()进气门;()()排气门;气门锥面的宽度与厚度有关,一般(91.05)。当度时,()对于柴油机的气门锥面宽度b=(0.91.05)*4.5=(4.054.725)mm 进气门(上式中T取4.5)b=(0.91.05)*4=(3.64.2)mm排气门(上式中T取4.0)。注意提醒的是,并不是所有的b都参与了密封,真正起到密封的是一条位于宽度b中间附近的密封带,密封带的宽度b小得多,气门的大部分热量是通过这条密封带传出去的,密封带较宽则传热的效果就较好,气门的工作温度就较低,但气门的密封性就较差。反之,密封带太窄,虽然密封性较好,但散热不良,且接触压力较大,会加速气门的磨损,因此需综合这两个方面的因素来选取气门密封带的宽度,其宽度一般取1.53.0, 195B柴油机的密封带宽度,经过查表是2.3mm。5、气门杆的设计:(1)气门杆的结构: 气门杆通常是做成实心的,但是为了减轻质量,对于高速发动机,它的温度很高,将气门杆做成空心,并在排气门的杆内充油金属钠进行冷却以降低热负荷,对也195B柴油机为了考虑到它的成本问题,就直接将它设计成实心气门杆。(2)气门杆颈: 气门杆的颈部选择决定也排气所需的耐久性,增加杆的颈部有利于气门的热量逸散。杆的颈部选择还决定于它在导管中运动时侧向力的大小。气门通过凸轮挺柱和摇臂来驱动时,杆部受到的侧向力就比较小。气门杆的颈部增大也会引起质量的增加,工作时的惯性力增加,落座时冲击负荷增加的一系列问题。根据经验公式,气门杆的颈部可取头部外径的(1625)%。考虑到加工和维修的方便,一般进排气门杆的颈部取相等。195B柴油机的气门杆的直径:d=(1625)% *42=(6.7210.5)mm。(3) 气门杆长度L: 气门杆长度决定于气缸盖和气门弹簧的设计,一般总希望短些,以便降低发动机的总高度,减小气门的质量,通常L=(2.53.5)D,D是气门的头部直径。195B柴油机的L=(2.53.5)*42=(105147)mm (4)气门杆表面的热处理工艺: 要经过淬火处理,要求的硬度不小于HRC50。才能满足其工作条件。 (5)气门杆与弹簧的锁紧:为了防止气门弹簧和气门锁夹断裂时气门落入气缸而引起严重的事故,可以在气门锁夹槽的下部增加一段凹槽,然后嵌入弹簧圈,凹槽的位置应能保证气门的下落量只比气门最大升程大12mm就可以。如下图195 B柴油机的锁紧的组合图: 1气门 2 气门锁夹 3弹簧座 4气门弹簧二、气门旋转机构的设计:(1) 气门旋转机构的作用: 让气门在工作过程中产生均匀、缓慢的旋转运动,使气门温度均匀也可将锥面及气门杆上的积碳擦掉,以改善气门杆的润滑条件,从而改善气门座及导管的导热性。(2) 气门旋转机构的形式: 有两种结构形式:一、松开式旋转机构,二、强制式旋转机构。195B型柴油机采用的是下置强制式旋转机构。如图: 它在工作时气门的旋转时通过盖盘、气门弹簧、弹簧上座和锁夹来查、传递的。 (3)注意事项: 旋转机构的转速除了取决于结构因素外,还受到蝶形弹簧特性的影响,一般的讲,蝶形弹簧刚度增大则转速下降,反之,转速增加。195B型柴油机要求气门每启闭一次气门旋转68deg,或者在发动机标定转速时,旋转机构的转速在2025rpm左右,并且应使机构在气门全开时旋转,在其他气门启闭时间不要旋转,否则会加剧气门锥面的磨损。三、气门座圈的设计: (1)气门材料:气门温度工作温度一般在200300度之间,对座圈材料的要求为:热膨胀系数与气缸盖材料接近,在工作温度下有一定的强度、硬度和耐蚀性,并有较好的导热性和切削性能。常用的座圈材料为合金铸铁,球墨铸铁QT622。气门座圈的材料与硬度必须与气门锥面的硬度相适应。对与195B气门的材料选择为QT622。 (2)气门座圈的作用: 以一般材料铸造的汽缸盖,当气门座不能满足耐冲击、耐腐蚀和热硬度时,为延长气门和气门座的使用期限,就需要采用气门座。 (3)气门座圈的结构:气门座圈是一个金属环状,它是通过压入气缸盖的,在现代的柴油机的进、排气门口一般都压入座圈,这样既可延长气门和气门座的使用期限,又便于维修,但也增加了制造成本,特别是影响了排气门热量的传出,从而使排气门温度增高,实验表明,排气门装有座圈时,气门温度可能增高4065对于195 B柴油机的气门座圈也是通过压入的方法将它给压入气缸盖的。 (4)气门座圈变形的原因:发动机工作时由于气门压力与热负荷引起气门座圈的瞬时扭矩变形,在气缸盖螺钉凝紧时产生的机械应力,气缸盖的蠕变以及气门座的冷却不均匀都会引起气门座的永久扭矩变形,这些变形都会引起气门的密封和导热,使气门温度升高,并在气门颈部产生弯曲应力。 (5)气门座圈的过盈配合要求:气门座圈必须与气缸盖配合良好,不允许出现松动、脱落现象,因此要合理与慎重的匹配的材料以及它们之间配合公差、应该指出的是,如果增大过盈量的方法来阻止座圈的脱落时不合适的。因为过盈过大会使座圈的压缩应力过高,如超过材料的弹性极限,则出现塑性变形,座圈反而会脱落。正确的过盈量见表: 序号气门座圈外径(mm)过盈量(mm)125600.050.10250750.0750.1253751000.100.15(6)气门座圈高度h与壁厚V的设计: H=(815)%x D=(0.080.15)x40=(3.26)mm V=(1.72.5)%*D=(0.0170.025)*40=(0.681)mm 上式中D是气门座圈的内径;(7)气门斜角: 气门座圈的斜角常设计得比气门斜角大(0.51)c,这样就可使气门和气门座的外边缘在理论上形成先接触提高它们的密封压力,并使压力更均匀地分布。195B柴油机的斜角也是按照此公式计算的。但是值得注意的,千万不能是气门斜角大于座圈斜角,那样,在气门落座时使形成喷口,使气流以很高速度流出,从而加速锥面的烧损和侵蚀。四、气门导管的设计: (1)气门导管的材料:气门导管与气门杆的匹配应有较好的滑动性,即使在润滑条件较差的情况下也要可靠地工作。今年来广泛采用铁基粉末冶金来制造导管,它的特点具有磨损笑,工艺性好,造价低的优点。195B柴油机就是用的这种材料。 (2)气门导管工作的条件:气门杆工作时在导管中滑动,使导管承受侧向压力,并且气门的部分热量也从导管散除。导管与气门这对摩擦副由于靠近气门头部,所以温度较高,润滑油易结碳,但供给摩擦副的润滑油又不能过多,以免流入燃烧室中,因此,要求导管在润滑条件较差的情况下能耐磨。 (3)气门导管外形及结构:导管的外表面一般都设计成光滑的圆柱形,没有任何台阶,以便无心磨床加工制造。导管的长度,取决于气缸盖的布置,只要地位允许,应尽可能的长些,最好不要小于气门杆直径的6倍,以减小气门对导管的侧压力,并有利于气门的导向和散热。气门导管的受热端尽量靠近气门头并创造良好的冷却条件,这对于降低排气门的温度是有利的,为此可在排气道内铸造一平台,并使冷却水道尽量靠近凸台,但这个凸台绝对不能与气门头过于或者铸的更大,以致有碍于气体的排出。如图:(4) 导管外径与气缸盖导管孔德间隙选择:一般选择其过盈量为导管的0.0030.005倍。(5) 气门杆与导管的配合间隙:气门导管与气门杆的配合间隙应认真选择,间隙过大则散热不良,同时气门在导管中容易摆动、冲击,使其和气门座磨损不均匀而漏气、漏油,这种渗漏甚至使气门头烧损。间隙过小对气门座偏心的补偿能力下降,还会因气门杆受热而卡在气门导管中。进、排气门工作的条件不同,所以各自的间隙也是不同,一般进气门取进气门杆的0.0050.01倍,排气门取排气门杆直径的0.0080.012倍。对与195B柴油机的间隙:10*(0.0050.01)=(0.050.1)mm。 气门表面的强化处理:1、滚压 2、渗铝 3、镀铬 4、氮化 5、表面淬火 。 五、气门的主要损坏形式和预防措施 (一) 排气门的烧损 一、 排气门的烧损的原因:1 材料的高温耐蚀性不够2 燃烧残渣沉积在锥面,不能自行排出,使气门与气门座之间的导热性变坏,造成锥面局部温度升高,促使气门材料烧损。3 气门座由于热应力或装配不当产生扭曲,在高温和气体压力作用下气门头部变形,因而造成气门漏气。二、预防的措施:1 选择在高温下耐腐蚀性好的材料。应考虑柴油中含硫、重油中含钒的影响。2 在气门锥面堆焊基合金。
展开阅读全文