资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,小专题,4,三大常考相似模型,模型一,A,字型,有一个公共角,或,有公共顶点的一对等角,,此时需要找另一对角相等若题中未明确相似三角形对应顶点,则需要分类讨论,方法解读,解析,DE,BC,,,ADE,B,,,AED,C,,,ADE,ABC,,,B,对应训练,2,(2020,广西,),如图,在,ABC,中,,BC,120,,高,AD,60,,正方形,EFGH,一边在,BC,上,点,E,,,F,分别在,AB,,,AC,上,,AD,交,EF,于点,N,,则,AN,的长为,(),A,15B,20C,25D,30,B,解析,设正方形,EFGH,的边长,EF,EH,x.,四边,EFGH,是正方形,,HEF,EHG,90,,,EF,BC,,,AEF,ABC.,AD,是,ABC,的高,,HDN,90,,,四边形,EHDN,是矩形,,DN,EH,x.,4,(2020,临沂,),如图,在,ABC,中,,D,、,E,为边,AB,的三等分点,,EF,DG,AC,,,H,为,AF,与,DG,的交点若,AC,6,,则,DH,_.,1,解得,EF,2,,,DH,EF,2,1.,解析,D,、,E,为边,AB,的三等分点,,EFDGAC,,,BE,DE,AD,,,BF,GF,CG,,,AH,HF,,,AB,3BE,,,DH,是,AEF,的中位线,,DH,EF.,EFAC,,,BEFBAC,,,解得,EF,2,,,DH,EF,2,1.,模型二,8,字型,有一组隐含的等角,(,对顶角,),,需要从已知条件中、图中隐含条件或通过证明得,另一对角相等,若题中未明确指出相似三角形对应顶点,则需要分类讨论,方法解读,【经典母题】,如图,已知,AC,、,BD,相交于点,O,,且,AB,CD,,求证:,ABO,CDO.,思维方法,根据两直线平行,内错角相等可得,A,C,,,B,D,,再根据两组角对应相等的三角形相似解答,解答,证明:,AB,CD,,,A,C,,,B,D,,,ABO,CDO.,5,(2020,海南,),如图,在,ABCD,中,,AB,10,,,AD,15,,,BAD,的平分线交,BC,于点,E,,交,DC,的延长线于点,F,,,BGAE,于点,G,,若,BG,8,,则,CEF,的周长为,(),A,16B,17,C,24D,25,对应训练,A,解析,在,ABCD,中,,CD,AB,10,,,BC,AD,15,,,BAD,的平分线交,BC,于点,E,,,AB,DC,,,BAF,DAF,,,BAF,F,,,DAF,F,,,DF,AD,15,,,同理,BE,AB,10,,,CF,DF,CD,15,10,5.,在,ABG,中,,BGAE,,,AB,10,,,BG,8.,在,RtABG,中,,AG,6.,AE,2AG,12,,,ABE,的周长等于,10,10,12,32.,四边形,ABCD,是平行四边形,,ABCF,,,CEFBEA,,相似比为,510,12,,,CEF,的周长为,16.,故选,A.,B,解析,四边形,ABCD,是矩形,,ABE,是等边三角形,,AB,AE,BE,,,EAB,EBA,60,,,AD,BC,,,DAB,CBA,90,,,AB,CD,,,AB,CD,,,DAE,CBE,30,,故选项,A,不符合题意;,DAE,30,,,cos,DAE=,,故选项,D,不符合题意;,在,ADE,和,BCE,中,,ADEBCE(SAS),,,DE,CE,0.5CD,0.5AB.,ABCD,,,ABFCEF,,,,故选项,C,不符合题意故选,B.,2,8,如图,,ABD,BCD,90,,,DB,平分,ADC,,过点,B,作,BM,CD,交,AD,于,M.,连接,CM,交,DB,于,N.,(1),求证:,BD,2,ADCD,;,(2),若,CD,6,,,AD,8,,求,MN,的长,(2),解:,BM,CD,,,MBD,BDC,,,ADB,MBD,,且,ABD,90.,BM,MD,,,MAB,MBA,,,BM,MD,AM,4.,BD,2,ADCD,,且,CD,6,,,AD,8,,,BD,2,48,,,BC,2,BD,2,CD,2,12,,,模型三一线三等角型,1,点,P,在线段,AB,上,(,同侧型,),结论:,APC,BDP,.,方法解读,2,点,P,在线段,AB,的延长线上,(,异侧型,),结论:,APC,BDP,.,3,以等腰三角形或等边三角形为背景,三个等角顶点在同一直线上,称,一线三等角,模型,其中,1,2,3,,可根据三角形内角和及补角得到另一组等角,可得图中两阴影部分三角形相似,【经典母题】,如图,在,ABC,中,,AB,AC,,点,P,,,D,分别是,BC,,,AC,边上的点,且,APD,B.,(1),求证:,ABP,PCD,;,(2),若,AB,10,,,BC,12,,当,PD,AB,时,求,BP,的长,解答,(1),证明:,AB,AC,,,ABC,ACB.,APC,ABC,BAP,,,APD,DPC,ABC,BPA,,且,APD,B,,,DPC,BAP,且,ABC,ACB.,ABP,PCD.,9,(2020,乐山,),如图,,E,是矩形,ABCD,的边,CB,上的一点,,AF,DE,于点,F,,,AB,3,,,AD,2,,,CE,1.,求,DF,的长度,解:四边形,ABCD,是矩形,,DC,AB,3,,,ADC,C,90.,CE,1,,,AF,DE,,,AFD,90,C,,,ADF,DAF,90,,,对应训练,又,ADF,EDC,90,,,EDC,DAF,,,EDC,DAF,,,10,已知,在,ABC,中,,AB,AC,,,BAC,90,,点,D,是边,BC,的中点,点,E,在边,AB,上,(,点,E,不与点,A,、,B,重合,),,点,F,在边,AC,上,连接,DE,、,DF.,(1),如图,1,,当,EDF,90,时,求证:,BE,AF,;,(2),如图,2,,当,EDF,45,时,求证:,BDE,ADE,90,,,BDE,ADF.,在,BDE,和,ADF,中,,BDE,ADF(ASA),,,BE,AF.,(2),BDF,BDE,EDF,,,BDF,C,CFD,,,BDE,EDF,C,CFD.,又,C,EDF,45,,,BDE,CFD,,,BDE,CFD.,
展开阅读全文