资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,高效课堂精品课件,高二数学,市实验中学 数学组,高效课堂精品课件,等差数列,(,二,),等差数列(二),性质一、任意两项的关系,在等差数列 中,有,性质一、任意两项的关系,在等差数列中,已知,a,2,=5,a,8,=17,解:由题意可知,求公差与通项公式,.,说明:由此可以看到:已知等差数列的两项就,可以确定这个数列,.,例:,在等差数列中,已知a2=5,a8=17,解:由题意可知求公差,性质二、等差中项,观察如下的两个数之间,插入一个什么数后三个数就会成为一个等差数列:,(,1,),2,,,4,(,2,),-1,,,5,(,3,),-12,,,0,(,4,),0,,,0,3,2,-6,0,如果在,a,与,b,中间插入一个数,A,,使,a,,,A,,,b,成等差数列,那么,A,叫做,a,与,b,的,等差中项,。,性质二、等差中项 观察如下的两个数之间,插入一,高二数学高效课堂资料等差数列的性质ppt课件,思考:,思考:,数列,a,n,是等差数列,,m,、,n,、,p,、,qN,+,,且,m+n=p+q,,则,a,m,+a,n,=a,p,+a,q,。,性质三、多项关系,推广:,若,m+n=2p,,则,a,m,+a,n,=2a,p,。,数列an是等差数列,m、n、p、qN+,且m+n=p+,证明:,a,p,+a,q,=a,1,+(p-1)d+a,1,+(q-1)d=2a,1,+(p+q-2)d,a,m,+a,n,=a,1,+(m-1)d+a,1,+(n-1)d=2a,1,+(m+n-2)d,又因为,p+q=m+n,,所以,a,p,+a,q,=a,m,+a,n,特别地,若,则,注意:上面的命题的逆命题 是不一定成立 的,证明:ap+aq=a1+(p-1)d+a1+(q-1)d=,判断对错:,注意:等式两边作和的项数必须一样多,判断对错:,例,1.,在等差数列,a,n,中,(1),已知,a,6,+,a,9,+,a,12,+,a,15,=20,,求,a,1,+,a,20,例题分析,(2,)已知,a,3,+,a,11,=10,,求,a,6,+,a,7,+,a,8,(3),已知,a,4,+,a,5,+,a,6,+,a,7,=56,,,a,4,a,7,=187,,求,a,14,及公差,d,.,解:由,a,1,+,a,20,=,a,6,+,a,15,=,a,9,+,a,12,及,a,6,+,a,9,+,a,12,+,a,15,=20,,可得,a,1,+,a,20,=10,解:,a,3,+,a,11,=,a,6,+,a,8,=2,a,7,,,又已知,a,3,+,a,11,=10,,,a,6,+,a,7,+,a,8,=,(,a,3,+,a,11,),=15,解:,a,4,+,a,5,+,a,6,+,a,7,=56,a,4,+,a,7,=28 ,又,a,4,a,7,=187,,解、得,a,4,=17,a,7,=11,a,4,=11,a,7,=17,或,d=,_,2,或,2,从而,a,14,=,_,3,或,31,例1.在等差数列an中例题分析(2)已知 a3+a11,课堂练习,1.,等差数列,a,n,的前三项依次为,a,-6,,,2,a,-5,,,-3,a+,2,,则,a,等于(,),A,.-1,B,.1,C,.-2,D.2,B,2.,在数列,a,n,中,a,1,=1,,,a,n,=,a,n+,1,+4,,则,a,10,=,2(2,a,-5)=(-3,a+2,)+(,a,-6,),提示,1:,提示:,d=a,n+,1,a,n,=-4,-35,3.,在等差数列,a,n,中,(1),若,a,59,=70,,,a,80,=112,,求,a,101,;,(2),若,a,p,=,q,,,a,q,=,p,(,pq,),,求,a,p+q,d=,2,a,101,=154,d=,-1,a,p+q,=,0,课堂练习1.等差数列an的前三项依次为 a-6,2a-,研究性问题,2.,已知,a,n,为等差数列,若,a,10,=20,,,d,=-1,,求,a,3,?,1.,若,a,12,=23,,,a,42,=143,,,a,n,=263,,求,n,.,3.,三数成等差数列,它们的和为,12,,首尾二数的,积为,12,,求此三数,.,d=,4,n,=72,a,3,=,a,10,+(3-10)d,a,3,=27,设这三个数分别为,a-d a,,,a+d,,则,3a=12,,,a,2,-d,2,=12,6,,,4,,,2,或,2,,,4,,,6,研究性问题2.已知an为等差数列,若a10=20 ,,2.,三数成等差数列,它们的和为,12,,首尾二数的积为,12,,求此三数,.,设这三个数分别为,a-d a,,,a+d,,则,3a=12,,,a,2,-d,2,=12,6,,,4,,,2,或,2,,,4,,,6,结论,:,三数成等差数列可,设这三个数分别为,a-d a,,,a+d,四数成等差数列可,设这四个数分别为,a-3d a-d,a+d,a+3d,2.三数成等差数列,它们的和为12,首尾二数的积为12,求,3.,更一般的情形,,a,n,=,,,d,=,小结:,1.,a,n,为等差数列,2.,a,、,b,、,c,成等差数列,a,n,+1,-,a,n,=d,a,n,+1,=a,n,+d,a,n,=,a,1,+,(,n-,1),d,a,n,=,kn +b,(,k,、,b,为常数),a,m,+,(,n,-,m,),d,b,为,a,、,c,的等差中项,AA,2,b=a+c,4.,在等差数列,a,n,中,由,m+n=p+q,a,m,+,a,n,=,a,p,+,a,q,注意:上面的命题的逆命题,是不一定成立,的;,5.,在等差数列,a,n,中,a,1,+,a,n,a,2,+,a,n-,1,a,3,+,a,n-,2,=,=,=,小结:1.,
展开阅读全文