资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,一、多媒体数据压缩技术,仙农(CEShannon)在创立信息论时,提出把数据看作是信息和冗余度的组合。早期的数据压缩之所以成为信息论的一部分是因为它涉及冗余度问题。而数据之所以能够被压缩是因为其中存在各种各样的冗余;其中有时间冗余性、空间冗余性、信息熵冗余、先验知识冗余、其它冗余等。时间冗余是语音和序列图像中常见的冗余,运动图像中前后两帧间就存在很强的相关性,利用帧间运动补兴就可以将图像数据的速率大大压缩。语音也是这样。尤其是浊音段,在相当长的时间内(几到几十毫秒)语音信号都表现出很强的周期性,可以利用线性预测的方法得到较高的压缩比。空间冗余是用来表示图像数据中存在的某种空间上的规则性,如大面积的均匀背景中就有很大的空间冗余性。信息熵冗余是指在信源的符号表示过程中由于未遵循信息论意义下最优编码而造成的冗余性,这种冗余性可以通过熵编码来进行压缩,经常使用的如Huff-man编码。先验知识冗余是指数据的理解与先验知识有相当大的关系,如当收信方知道一个单词的前几个字母为administrato时,立刻就可以猜到最后一个字母为r,那么在这种情况下,最后一个字母就不带任何信息量了,这就是一种先验知识冗余。其它冗余是指那些主观无法感受到的信息等带来的冗余。,一、多媒体数据压缩技术 仙农(CEShannon)在创立,1,通常数据压缩技术可分为无损压缩(又叫冗余压缩)和有损压缩(又叫熵压缩)两大类。无损压缩就是把数据中的冗余去掉或减少,但这些冗余量是可以重新插入到数据中的,因而不会产生失真。该方法一般用于文本数据的压缩,它可以保证完全地恢复原始数据;其缺点是压缩比小(其压缩比一般为2:1至5:1)。有损压缩是对熵进行压缩,因而存在一定程度的失真;它主要用于对声音、图像、动态视频等数据进行压缩,压缩比较高(其压缩比一般高达20:1以上。最新被称为“EigenID”的压缩技术可将基因数据压缩15亿倍)。对于多媒体图像采用的有损压缩的标准有静态图像压缩标准(JPEG标准,即JointPhotographicExpertGroup标准)和动态图像压缩标准(MPEG标准,即MovingPictureExpertGroup标准)。,通常数据压缩技术可分为无损压缩(又叫冗余压缩)和有损压缩(又,2,PEG利用了人眼的心理和生理特征及其局限性来对彩色的、单色的和多灰度连续色调的、静态图像的、数字图像的压缩,因此它非常适合不太复杂的以及一般来源于真实景物的图像。它定义了两种基本的压缩算法:一种是基于有失真的压缩算法,另一种是基于空间线性预测技术(DPCM)无失真的压缩算法。为了满足各种需要,它制定了四种工作模式:无失真压缩、基于DCT的顺序工作方式、累进工作方式和分层工作方式。,PEG利用了人眼的心理和生理特征及其局限性来对彩色的、单色的,3,MPEG用于活动影像的压缩。MPEG标准具体包三部分内容:(1)MPEG视频、(2)MPEG音频、(3)MP系统(视频和音频的同步)。MPEG视频是标准的核心分,它采用了帧内和帧间相结合的压缩方法,以离散余变换(DCT)和运动补偿两项技术为基础,在图像质量基不变的情况下,MPEG可把图像压缩至1100或更MPEG音频压缩算法则是根据人耳屏蔽滤波功能。利用音响心理学的基本原理,即“某些频率的音响在重放其频率的音频时听不到”这样一个特性,将那些人耳完全不到或基本上听到的多余音频信号压缩掉,最后使音频号的压缩比达到8:1或更高,音质逼真,与CD唱片可媲美。按照MPEG标准,MPEG数据流包含系统层和压层数据。系统层含有定时信号,图像和声音的同步、多分配等信息。压缩层包含经压缩后的实际的图像和声数据,该数据流将视频、音频信号复合及同步后,其数据输率为15MBs。其中压缩图像数据传输率为12M压缩声音传输率为02MBs。,MPEG用于活动影像的压缩。MPEG标准具体包三部分内容:(,4,MPEG标准的发展经历了MPEGI,MPEG一2、MPEG一4、MPEG-7、MPEG一21等不同层次。在MPEG的不同标准中,每个标准都是建立在前面的标准之上的,并与前面的标准向后的兼容。目前在图像压缩中,应用得较多的是MPEG一4标准,MPEG-是在MPEG-2基础上作了很大的扩充,主要目标是多媒体应用。在MPEG一2标准中,我们的观念是单幅图像,而且包含了一幅图像的全部元素。在MPEG一4标准下,我们的观念变为多图像元素,其中的每个多图像元素都是独立编码处理的。该标准包含了为接收器所用的指令,告诉接收器如何构成最终的图像。,MPEG标准的发展经历了MPEGI,MPEG一2、MPEG,5,每个解码缓冲器只接收属于它自己的灵敏据流,并转送给解码器。复合存储器完成图像元素的存储,并将它们送到显示器的恰当位置。音频的情况也是这样,但显然不同点是要求同时提供所有的元素。数据上的时间标记保证这些元素在时间上能正确同步。MPEG一4标准对自然元素(实物图像)和合成元素进行区分和规定,计算机生成的动画是合成元素的一个例子。比如,一幅完整的图像可以包含一幅实际的背景图,并在前面有一幅动画或者有另外一幅自然图像。这样的每一幅图像都可以作最佳压缩,并互相独立地传送到接收器,接收器知道如何把这些元素组合在一起。在MPEG一2标准中,图像被看作一个整体来压缩;而在MPEG一4标准下,对图像中的每一个元素进行优化压缩。静止的背景不必压缩到以后的I帧之中去,否则会使带宽的使用变得很紧张。而如果这个背景图像静止10秒钟,就只要传送一次(假设我们不必担心有人在该时间内切人此频道),需要不断传送的仅是前台的比较小的图像元素。对有些节目类型,这样做会节省大量的带宽。MPEG一4标准对音频的处理也是相同的。例如,有一位独唱演员,伴随有电子合成器,在MPEG一2标准下,我们必须先把独唱和合成器作混合,然后再对合成的音频信号进行压缩与传送。在MPEG一4标准下,我们可以对独唱作单独压缩,然后再传送乐器数字接口的声轨信号,就可以使接收器重建伴音。,每个解码缓冲器只接收属于它自己的灵敏据流,并转送给解码器。复,6,当然,接收器必须能支持MIDI放音。与传送合成的信号相比,分别传送独唱信号和MIDI数据要节省大量的带宽。其它的节目类型同样可以作类似的规定。MPEG一7标准又叫多媒体内容描述接口标准。图像可以用色彩、纹理、形状、运动等参数来描述,MPEG一7标准是依靠众多的参数对图像与声音实现分类,并对它们的数据库实现查询。,当然,接收器必须能支持MIDI放音。与传送合成的信号相比,分,7,二、多媒体数据压缩技术的实现方法,目前多媒体压缩技术的实现方法已有近百种,其中基于信源理论编码的压缩方法、离散余弦变换(DCT)和小波分解技术压缩算法的研究更具有代表性。小波技术突破了传统压缩方法的局限性,引入了局部和全局相关去冗余的新思想,具有较大的潜力,因此近几年来吸引了众多的研究者。在小波压缩技术中,一幅图像可以被分解为若干个叫做“小片”的区域;在每个小片中,图像经滤波后被分解成若干个低频与高频分量。低频分量可以用不同的分辨率进行量化,即图像的低频部分需要许多的二进制位,以改善图像重构时的信噪比。低频元素采用精细量化,高频分量可以量化得比较粗糙,因为你不太容易看到变化区域的噪声与误差。此外,碎片技术已经作为一种压缩方法被提出,这种技术依靠实际图形的重复特性。用碎片技术压缩图像时需要占用大量的计算机资源,但可以获得很好的结果。借助于从DNA序列研究中发展出来的模式识别技术,能减少通过WAN链路的流量,最多时的压缩比率能达到90,从而为网络传送图像和声音提供更大的压缩比,减轻风络负荷,更好地实现网络信息传播。,二、多媒体数据压缩技术的实现方法 目前多媒体压缩技术的实现方,8,三、压缩原理,由于图像数据之间存在着一定的冗余,所以使得数据的压缩成为可能。信息论的创始人Shannon提出把数据看作是信息和冗余度(redundancy)的组合。所谓冗余度,是由于一副图像的各像素之间存在着很大的相关性,可利用一些编码的方法删去它们,从而达到减少冗余压缩数据的目的。为了去掉数据中的冗余,常常要考虑信号源的统计特性,或建立信号源的统计模型。图像的冗余包括以下几种:(1)空间冗余:像素点之间的相关性。(2)时间冗余:活动图像的两个连续帧之间的冗余。(3)信息熵冗余:单位信息量大于其熵。(4)结构冗余:图像的区域上存在非常强的纹理结构。(5)知识冗余:有固定的结构,如人的头像。(6)视觉冗余:某些图像的失真是人眼不易觉察的。,三、压缩原理 由于图像数据之间存在着一定的冗余,所以使得数据,9,对数字图像进行压缩通常利用两个基本原理,(1)数字图像的相关性。在图像的同一行相邻像素之间、活动图像的相邻帧的对应像素之间往往存在很强的相关性,去除或减少这些相关性,也就去除或减少图像信息中的冗余度,即实现了对数字图像的压缩。(2)人的视觉心理特征。人的视觉对于边缘急剧变化不敏感(视觉掩盖效应),对颜色分辨力弱,利用这些特征可以在相应部分适当降低编码精度,而使人从视觉上并不感觉到图像质量的下降,从而达到对数字图像压缩的目的。,对数字图像进行压缩通常利用两个基本原理(1)数字图像的相,10,编码压缩方法有许多种,从不同的角度出发有不同的分类方法,比如从信息论角度出发可分 为两大类:,(1)冗余度压缩方法,也称无损压缩,信息保持编码或熵编码。具体讲就是解码图像和压缩 编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。(2)信息量压缩方法,也称有损压缩,失真度编码或熵压缩编码。也就是讲解码图像和原始图像是有差别的,允许有一定的失真。应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分类为:(1)无损压缩编码种类 哈夫曼编码 算术编码 行程编码 Lempel zev编码(2)有损压缩编码种类 预测编码:DPCM,运动补偿 频率域方法:正文变换编码(如DCT),子带编码 空间域方法:统计分块编码 模型方法:分形编码,模型基编码 基于重要性:滤波,子采样,比特分配,矢量量化(3)混合编码 JBIG,H261,JPEG,MPEG等技术标准衡量一个压缩编码方法优劣的重要指标(1)压缩比要高,有几倍、几十倍,也有几百乃至几千倍;(2)压缩与解压缩要快,算法要简单,硬件实现容易;(3)解压缩的图像质量要好。,编码压缩方法有许多种,从不同的角度出发有不同的分类方法,比如,11,四、JPEG图像压缩算法,1.JPEG压缩过程 JPEG压缩分四个步骤实现:1.颜色模式转换及采样;2.DCT变换;3.量化;4.编码。21颜色模式转换及采样 RGB色彩系统是我们最常用的表示颜色的方式。JPEG采用的是YCbCr色彩系统。想要用JPEG基本压缩法处理全彩色图像,得先把RGB颜色模式图像数据,转换为YCbCr颜色模式的数据。Y代表亮度,Cb和Cr则代表色度、饱和度。通过下列计算公式可完成数据转换。,四、JPEG图像压缩算法 1.JPEG压缩过程 J,12,Y=0.2990R+0.5870G+0.1140B Cb=-0.1687R-0.3313G+0.5000B+128 Cr=0.5000R-0.4187G-0.0813B128 人类的眼晴对低频的数据比对高频的数据具有更高的敏感度,事实上,人类的眼睛对亮度的改变也比对色彩的改变要敏感得多,也就是说Y成份的数据是比较重要的。既然Cb成份和Cr成份的数据比较相对不重要,就可以只取部分数据来处理。以增加压缩的比例。JPEG通常有两种采样方式:YUV411和YUV422,它们所代表的意义是Y、Cb和Cr三个成份的资料取样比例。,Y=0.2990R+0.5870G+0.1140B,13,22.DCT变换 DCT变换的全称是离散余弦变换(Discrete Cosine Transform),是指将一组光强数据转换成频率数据,以便得知强度变化的情形。若对高频的数据做些修饰,再转回原来形式的数据时,显然与原始数据有些
展开阅读全文