北师大版中考数学复习课件—图形相似

上传人:ra****d 文档编号:252401424 上传时间:2024-11-15 格式:PPT 页数:26 大小:425.50KB
返回 下载 相关 举报
北师大版中考数学复习课件—图形相似_第1页
第1页 / 共26页
北师大版中考数学复习课件—图形相似_第2页
第2页 / 共26页
北师大版中考数学复习课件—图形相似_第3页
第3页 / 共26页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,中考复习,准备好了吗?,阳泉市义井中学 高铁牛,时刻准备着!,2005年,二、空间与图形,课程标准及学习目标,(4)图形的相似,了解比例的根本性质,了解线段的比1成比例线段,通过建筑、艺术上的实例了解黄金分割。,通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。,了解两个三角形相似的概念,探索两个三角形相似的条件。,了解图形的位似,能够利用位似将一个图形放大或缩小。,通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。,通过实例认识锐角三角函数(sinA,cosA,tanA),知道300,450,600角的三角函数值;会使用计算器由锐角求它的三角函数值,由三角函数值求它对应的锐角。,运用三角函数解决与直角三角形有关的简单实际问题。,(1)认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。,参见例4,(2)能在方格纸上建立适当的直角坐标系,描述物体的位置。,参见例5,(3)在同一直角坐标系中,感受图形变换后点的坐标的变化。,参见例6,(4)灵活运用不同的方式确定物体的位置。,参见例7,3图形与坐标,其中a,b分别叫做这个,线段比,的,前项,和,后项,.,一、线段的比,1.,如果选用一个长度单位量得两条线段,a,、,b,的长度分别为,m,、,n,,,那么,两条线段的比为,a,:,b=m,:,n,或,2.,在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做,成比例线段,简称,比例线段,四条线段a,b,c,d成比例,记作ab=cd.,或 其中a,d为,比例外项,;b,c为,比例内项,.,d,称为a,b,c的,第四比例项,特殊情况:假设作为比例内项的两条线段相同,即ab=bc(或表示为b2=ac),那么线段b叫a,c的比例中项,3.比例根本性质,比例的灵活变形可助你到达希望的颠峰:,横竖、上下都可比,惟有交叉只能乘.,5.,等比性质:,4.,合比性质:,6.,黄金分割,如图4-5,点C把线段AB分成两条线段AC和BC,如果 那么称线段AB被点C,黄金分割,点C叫做线段AB的,黄金分割点,AC,与AB的比 (或,BC,与,AC,的比 )称为,黄金比,.,A,B,C,1.,形状相同的图形,表象:,大小不等,,形状相同,.,实质:各,对应角,相等、各,对应边,成比例,.,2.相似多边形,各对应角相等、各对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比(相似比与表达的顺序有关).,3.相似多边形性质:,相似多边形的对应角相等,对应边成比例.,相似多边形周长的比等于相似比.,二、,图形的相似,相似多边形,对应对角线,的比,等于相似比,.,相似多边形,对应三角形,相似,且相似比等于,相似多边形的,相似比,.,相似多边形,对应三角形面积的比,等于相似多边形的,相似比的平方,.,相似多边形,面积的比,等于相似比的平方,.,4.,多边,形与三角形,三角形是边数最少的多边形,.,相似,三角形可类比相似多边形来学习,.,5.相似三角形,三个对应角相等、三条对应边成比例的两个三角形叫做相似三角形.相似三角形对应边的比叫做相似比(相似比与表达的顺序有关).,6.相似三角形性质:,相似三角形的对应角相等,对应边成比例.,相似三角形对应中线的比,对应角平分线的比,对应高的比,对应周长的比都等于相似比.,相似三角形面积的比等于相似比的平方.,7.,相似,三角形与,全等,三角形的,关系,:,相似比等于,1,的两个三角形全等,.,假设ADEABC,那么,DAE=BAC,ADE=ABC,AED=ACB.,8.两个极具代表性的益智“模型:“A型和“X 型相似三角形.,A,B,C,D,E,E,D,C,B,A,1.,定理,两角对应相等的两个三角形相似,.,2.,推论,1,平行于三角形一边直线截其它两边,(,或其延长线,),所截得的三角形与原三角形相似,;,如图,:,如果,DEBC,那么,A,三、,三角形相似的判定方法,2.,推论,1,平行于三角形一边直线截其它两边,(,或其延长线,),所截得的三角形与原三角形相似,;,如图,:,如果,DEBC,那么,A,3.,推论,2,平行于三角形一边直线截其它两边,(,或其延长线,),所得的对应线段成比例,.,如果,DEBC,,,A,B,C,D,E,A,D,E,B,C,E,D,C,B,A,4.,定理,三边对应成比例的两个三角形相似,.,5.,定理 两边对应成比例,且夹角相等的两个三角形相似,;,6.,定理 斜边直角边对应成比例的两个直角三角形相似,.,7.模型“双垂直三角形,A,B,C,D,ACDCBDABC.,认识结论,:,A=DCB;B=ACD;,直角三角形斜边上的高分直角三角形所成的两个直角三角形与原三角形相似,.,三、,相似图形的特例,图形的位似,1.,如果两个图形不仅相似,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做,位似图形,这个点叫做,位似中心,这时的相似比又称为,位似比,.,2.,性质:,位似图形上的任意一对对应点到位似中心的距离之比等于位似比,.,D,E,F,A,O,B,C,D,E,F,A,O,B,C,3.,如何作位似图形,(,放大,),.,5.,体会位似图形何时为,正像,何时为,倒像,.,4.,如何作位似图形,(,缩小,),.,O,P,A,B,G,C,E,D,F,P,B,A,C,D,E,F,G,A,B,C,D,E,F,G,A,B,G,C,E,D,F,P,6.如图,添加一个条件,使那么ABCAED,那么这条件可以是 .,7.如下图,在ABC中,底边BC=60cm,高 AD=40cm,四边形PQRS是矩形形.,(1)ASR与ABC相似吗?为什么?,(2)求矩形PQRS的边长.,A,E,D,C,B,A,B,C,S,R,E,P,D,Q,1.,正切的定义,:,如图,:,Rt,ABC,中,锐角,A,的对边与邻边的比叫做,A,的,正切,记作,tanA,即,2.,余切的定义,:,A,的,正切的倒数叫做,A,的,余切,即,Rt,ABC,中,锐角,A,的邻边与对边的比叫做,A,的,余切,记作,cotA,即,四、直角,三角形的边角关系,3.,坡面与水平面的夹角,(,),称为,坡角,坡面的铅直高度与水平宽度的比称为,坡度,i,(,或坡比,),即,坡度等于坡角的正切,.,A,B,C,A的对边,A的邻边,i,4.,正弦的定义,:,在,Rt,ABC,中,锐角,A,的对边与,斜,边的比叫做,A,的,正,弦,记作,sinA,即,5.,余弦的定义,:,在,Rt,ABC,中,锐角,A,的,邻,边与,斜,边的比叫做,A,的,余弦,记作,cosA,即,6.,锐角,A,的正弦,余弦,正切和余切都叫做,A,的,锐角,三角函数,.,sinA,cosA,tanA,cotA,是在直角三角形中定义的,(,注意数形结合,构造直角三角形,).,它的实质,是一个比值,其大小只与,A,的大小有关,.,A,B,C,A的对边,A的邻边,7.,互余两角,之间的三角函数关系:,sinA,=,cosB,或,sinB,=,cosA,.,一个锐角的正弦等于它的余角的余弦,即,cosA,=,sinB,或,cosB,=,sinA,.,一个锐角的余弦等于它的余角的正弦,即,tanA,=,cotB,或,tanB,=,cotA,.,一个锐角的正切等于它的余角的余切,即,cotA,=,tanB,或,cotB,=,tanA,.,一个锐角的余切等于它的余角的正切,即,8.,同角,之间的三角函数关系:,平方和关系,:,sin,2,A,+cos,2,A,=1.,A,B,C,a,b,c,商的关系:,9.,特殊角,(,30,0,45,0,60,0,角,),的三角函数值,.,10.,三角尺,三边之间的比值关系,:,特殊角的三角函数值表,三角函数,锐角,正弦sin,余弦cos,正切tan,余切cot,30,0,45,0,60,0,30,0,60,0,45,0,45,0,1,2,1,1,11.,三角函数的有关计算:,由锐角求三角函数值,.,由锐角的三角函数值,反求锐角,.,运用,特殊角,(,30,0,45,0,60,0,角,),的三角函数值和计算器进行计算,.,由于计算器的型号与功能的不同,按相应的说明书使用,.,12.,解直角三角形:,工具,:,a,2,+b,2,=c,2,.,A+B=,9,0,0,.,类型:一边一角解三角形;两边解三角形.,b,A,B,C,a,c,13.几种模型:,根据图中所示数值求AD,1.,5.,4.,14.,三角函数的应用,(1),解直角三角形应用题,;,(2),测量物体的高度,.,A,B,C,a,D,C,B,A,D,20,30,0,45,0,3.,60,0,45,0,A,B,C,20,D,30,0,60,0,A,B,C,D,20,A,B,C,45,0,30,0,4cm,D,2.,能力测试独立作业,1.?数学专页?第37期.,祝同学们:,金榜题名!,愿我们:,心想事成!,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!