初值和边界问题——第四章课件

上传人:晚**** 文档编号:252400912 上传时间:2024-11-15 格式:PPT 页数:13 大小:164.16KB
返回 下载 相关 举报
初值和边界问题——第四章课件_第1页
第1页 / 共13页
初值和边界问题——第四章课件_第2页
第2页 / 共13页
初值和边界问题——第四章课件_第3页
第3页 / 共13页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,上页,下页,铃,结束,返回,首页,Chapter 4,Higher-Order Differential Equation,4.1 Preliminary Theory:Linear Equation,上页,下页,铃,结束,返回,首页,4.1.1 Initial-value and Boundary-value Problems,4.1.2 Homogeneous Equation,Chapter 4 Higher-Order Differ,For a linear differential equation,an nth-order initial-value problem is,Initial-value problem,4.1.1 Initial-value and Boundary-value Problems,For a linear differential e,Another type of problem consists of solving a linear,Boundary-value problem,differential equation of order two or greater in which,the dependent variable,y,or its derivatives are,specified at different points.A problem such as,Another type of problem consis,is called a boundary-value problem.The prescribed,values,are called boundary,conditions.,For a second-order differential equation,other pairs of boundary conditions could be,is called a boundary-value pro,Theorem 4.1,Existence of a Unique Solution,on an interval,I,and let,Let,and,g(x),be a continuous,for every,x,in this,interval.If,is any point in this interval,then a,solution,y(x),of the initial-value problem(1)exists,on the interval and is unique.,Theorem 4.1 Existence of a,4.1.2 Homogeneous Equation,with,g(x),not identically zero,is said to be,A linear nth-order differential equation of the form,Is said to be,homogeneous,whereas an equation,non-homogeneous,.,4.1.2 Homogeneous Equati,We make the following important assumptions about,the equation(2)and(3),are continuous;,(1)the coefficients,(2)The right-hand member g(x)is continuous;,(3)for every x in the interval I.,We make the following importan,Differential Operator,The symbol,D,is called a,differential operator,(微分算子),.,We define an,nth-order differential operator,to be,Differential OperatorThe symbo,For example,and,For exampleand,As a consequence of two basic properties of,differentiation,The differential operator L possesses a linearity property,where are constants,and the nth-order,differential operator L is a linear operator.,As a consequence of two basic,Superposition principle,(叠加原理),Theorem 4.2 Superposition principle,(homogeneous equation),Let be solutions of the homogeneous,n,th-order differential equation(6)on the interval,I,.,Then the linear combination,Superposition principle(叠加原理),where the are arbitrary,constants,is also a solution on the interval.,Corollaries,(推论),to Theorem 4.2,(A)a constant multiple of a,solution of a homogeneous linear,differential equation is also a solution.,(B)a homogeneous linear differential equation,always possesses the trivial solution,y=0.,where the,Example 1,The function and are both,solutions of the homogeneous linear equation,on the interval .By the,superposition principle,the linear combination,Is also a solution of the equation on the interval.,Example 1The function,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!