资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,八年级数学,下,新课标,人教版,第十九章 一次函数,学习新知,检测反馈,19.2.1,一次函数与正比例函数,八年级数学下 新课标 人教版,1,一般的,如果在一个变化过程中有两个变量,x,和,y,,并且对于变量,x,的每一个值,变量,y,都有唯一的值与它对应,那么我们称,y,是,x,的函数,其中,x,是自变量,,y,是因变量。,1,、函数,2,、函数的表示法:,可以用三种方法,图象法,、,列表法,、,解析式法,(关系式法),复习旧知,一般的,如果在一个变化过程中有两个变量x和y,并且对于变量x,2,(1)圆的周长,l,随半径r 大小变化而变化;,(2)铁的密度为,7.8g/cm,铁块的质量,m,(单位:,g,)随它的,体积,V,(单位:,cm,3,)的变化而变化,(,3,)每个练习本的厚度为,0.5cm,,一些练习本摞在一起的,总厚度,h,随练习本的本数,n,的变化而变化,(,4,)冷冻一个,0C,的物体,使它每分钟下降,2C,,物体的,温度,T,随冷冻时间,t,的变化而变化,写出 下列问题中各变量之间的,对应关系,:,l,=2r,m=7.8v,h=0.5n,T,=-2t,探究:,2,7.8,0.5,-2,这些变量之间的对应关系是,函数关系,吗?,(1)圆的周长 l 随半径r 大小变化而变化;写出 下列,3,观 察:,(1,),l,=,2,r,(2),m,=,7.8,v,(3),h,=,0.5,n,(4),T,=,-2,t,这些函数关系有哪些,共同的特征:,观 察:(1)l =2 r,4,正比例函数的概念:,一般地,形如,y=k,x,(,k,是常数,,k0,)的函数,叫做,正比例函数,,其中,k,叫做,比例系数。,正比例函数的概念:一般地,形如y=kx(k是常数,5,1.下列式子中,哪些表示,y,是,x,的,正比例函数,?是正比例函数的找出,比例系数,。,(2),y,=,x+,2,(1),y,=2,x,(5),y,=2,x,2,(3),(4),是,是,不是,不是,不是,不是,(6),y=kx,注意,1.,形如,y=kx,概念辨析:,2,.,k0,1.下列式子中,哪些表示 y 是 x 的正比例函数?是正比例,6,(,1,),若,y=(m-1),x,是正比例函数,,则,m,的取值范围是,。,(,2,)若,y=5,x,m-1,是正比例函数,,则,m=,。,(,3,)若,y=(m-2),x,|m-1|,是正比例函数,,则,m=,。,提高巩固:,m,1,2,0,(1)若 y=(m-1)x 是正比例函数,(2)若 y=,7,一、问题探索 学习新知,某弹簧的自然长度为,3,厘米,在弹性限度内,所挂物体的质量,x,每增加,1,千克,弹簧长度为,y,增加,0.5,厘米。,(,1,)计算所挂物体质量分别为,1,千克、,2,千克、,3,千克、,4,千克、,5,千克、,x,千克时弹簧的长度,并填入下表:,3.5,3.5,4,4.5,5,5.5,3+0.5x,问题:你能写出,x,与,y,之间的关系吗?,Y=3+0.5x,一、问题探索 学习新知3.53.544.555.53+0,8,汽车行驶路程,xkm,0,50,100,150,200,300,耗油量,yL,6,12,18,24,30,36,做一做,(2),你能写出耗油量,y,(L),与汽车行驶路程,x,(km),之间的关系式吗,?,某辆汽车油箱中原有汽油,60 L,汽车每行驶,50 km,耗油,6 L.,(,1,)完成下表:,汽车行驶路程xkm 050100150200300耗油量y,9,(3),你能写出油箱剩余油量,z,(L),与汽车行驶路程,x,(km),之间的关系式吗,?,(3)你能写出油箱剩余油量z(L)与汽车行驶路程x(km)之,10,一次函数,正比例函数,一次函数:,若两个变量,x,、,y,之间的关系可以表示成,y=kx+b(k,b,为常数,,k0,),的形式,则称,y,是,x,的,一次函数,。,例如,y=2x+1,y=x-1,等都是一次函数,.,当,b=0,时,称,y,kx,是,x,的,正比例函数,归纳总结,例如,y=,2,x,y=-,3,x,等都是正比例函数,.,正比例函数是特殊的一次函数!,一次函数正比例函数一次函数:若两个变量 x、y之间的关系可以,11,例,1,写出下列各题中,y,与,x,之间的关系式,并判断,:,y,是否为,x,的一次函数,?,是否为正比例函数,?,解,:(,1),由路程,=,速度,时间,得,y=60 x,y,是,x,的一次函数,也是,x,的正比例函数,.,三、例题讲解,(2),由圆的面积公式,得,y=x,2,y,不是,x,的正比例函数,也不是,x,的一次函数,.,(1),汽车以,60 km/h,的速度匀速行驶,行驶路程,y(km),与行驶时间,x(h),之间的关系,;,(2),圆的面积,y(cm,2,),与它的半径,x(cm),之间的关系,;,(3),某水池有水,15 m,3,现打开进水管进水,进水速度为,5 m,3,/h,x h,后这个水池内有水,y m,3,.,例1 写出下列各题中y与x之间的关系式,并判断:解:(1),12,解:,(3),这个水池每小时增加,5 m,3,水,x h,增加,5x m,3,水,因而,y=15+5x,y,是,x,的一次函数,但不是,x,的正比例函数,.,(3),某水池有水,15 m,3,现打开进水管进水,进水速度为,5 m,3,/h,x h,后这个水池内有水,y m,3,.,【思考】,两个变量之间存在函数关系,它们之间一定是一次函数或正比例函数关系吗,?,解:(3)这个水池每小时增加5 m3水,x h增加5x m3,13,课堂小结,一次函数,形如,y=kx+b(k,b,是常数,,k,0,)的函数,正比例函数,形如,y=kx(k,0,)的函数,课堂小结一次函数形如y=kx+b(k,b是常数,正比例函数形,14,一、判断下列各函数是否是一次函数?,(2),(4),二、,y=(k-1)x+-1,是一个一次函数,,当,k,=,是一次函数,当,k=,是正比例函数。,练一练,(3),一、判断下列各函数是否是一次函数?(2)(4)二、y=(k-,15,检测反馈,1,.,一根弹簧的原长为,12 cm,它能挂的重量不能超过,15 kg,并且每挂重物,1 kg,就伸长,0,.,5 cm,则在弹性限度内,挂重物后的弹簧长度,y,(cm),与所挂重物,x,(kg),之间的函数关系式是,.,y=0.5x+12(0 x15),2.y=kx+b,是一次函数,则,k,为,(,),A.,一切实数,B.,正实数,C.,负实数,D.,非零实数,D,检测反馈1.一根弹簧的原长为12 cm,它能挂的重量不能超过,16,3,.,某面包厂现年产值是,15,万元,计划从今年开始每年增加产值,2,万元,.,(1),写出年产值,y,(,万元,),与年数,x,之间的函数表达式,;,(2),求,5,年后的年产值,.,解,:(1)y=2x+15.,(2),当,x=5,时,y=25+15=25,即,5,年后的年产值为,25,万元,.,3.某面包厂现年产值是15万元,计划从今年开始每年增加产值2,17,小结:,本节课你有什么收获?,小结:,18,讨论:,请找出生活中其他的一次函数的模型,.,讨论:,19,作业,必做题:书,p82,页第一题、第二题。,选做题:第三题。,预习作业:正比例函数的图像与性质。,作业,20,一次函数与正比例函数公开课ppt课件,21,
展开阅读全文