资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,同角三角函数基本关系式,浙江省嵊泗中学,周 辉,同角三角函数基本关系式浙江省嵊泗中学 周 辉,1,教材分析,教学方法,学情分析,教学说明,教学目标,重点难点,教学过程,教材分析教学方法学情分析 教学说明教学目标教学过程,2,教材分析,普通高中课程标准实验教科书人教版A必修(4),同角三角函数基本关系式是学习三角函数定义后,安排的一节继续深入学习的内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数的基础,在教材中起承上启下的作用。同时,它体现的数学思想与方法在整个中学数学学习中起重要作用。,教材分析普通高中课程标准实验教科书人教版A必修(4),3,学情分析,我的学生从认知角度上看,已经比较熟练的掌握了三角函数定义的两种推导方法,从方法上看,学生已经对数形结合,猜想证明有所了解。从学习情感方面看,大部分学生愿意主动学习。从能力上看,学生主动学习能力、探究的能力、较弱。,学情分析 我的学生从认知角度上看,已经比较熟练的掌握了三角,4,教学目标,知识与技能目标,让学生掌握公式的推导过程,熟记基本关系式的内容,明确基本关系式在三个方面的应用:(,1,)、知道一个角的一个三角函数值能求这个角的其他三角函数值,(,2,)化简三角函数式(,3,)证明三角恒等式。,过程与方法目标,培养学生由特殊结论,-,猜想一般规律,-,进行严格证明的科学思维方式;通过用单位圆推导公式培养学生用数形结合思想处理数学问题的能力;通过求值、化简、证明培养学生逻辑推理能力;通过例题与练习提高学生动手能力和分析解决问题的能力。,情感与态度目标,培养学生积极参与大胆探索的精神;让学生通过自主学习体验学习的成就感,培养学生学习数学的兴趣和信心。,教学目标知识与技能目标 让学生掌握公式的推导,5,重点难点,重点:,同角三角函数基本关系式推导及应用。,知识技能线,情感态度线,过程方法线,观察分析,特殊到一般,灵活运用能力及应用意识,创设情景引入课题,公式推导,公式运用,探究尝试,数形结合,灵活运用,化归、方程思想,突重点,观察能力,合作交流,归纳猜想能力,抓三线、,重点难点重点:同角三角函数基本关系式推导及应用。知识技能线情,6,重点难点,重点难点,难点:,关系式在解题中的灵活选取,及使用公式时由函数值正负号的选取而导致的角的范围的讨论。,抓两点、破难点,情感、思维的兴奋点,知识层层深入,学生认知,知识特点,重点难点重点难点难点:关系式在解题中的灵活选取,及使用公式时,7,教学方法,创设情景引入问题,启发诱导公式推导,灵活运用公式,启发式,和,探究式,相结合的教学方法,计算机多媒体教学,教学策略,教学手段,教学方法创设情景引入问题启发诱导公式推导灵活运用公式启发式和,8,教学目标,重点难点,教学过程,练,学,导,探,引,过程分析,创设情境,探究问题,引导学生,掌握,反思提炼,延,作业布置,教学目标教学过程练学导探引过程分析创设情境探究问题引导学生掌,9,引,探,练,学,导,延,引,过程分析,创设情景引入课题,气象学家洛伦兹1963年提出一种观点:南美洲亚马逊河流域热带雨林中的一只蝴蝶,偶尔扇动几下翅膀,可能在两周后引起美国德克萨斯的一场龙卷风。这就是理论界闻名的“蝴蝶效应”,此效应本意是说事物初始条件的微弱变化可能会引起结果的巨大变化。蝴蝶扇翅膀成为龙卷风的导火索。从中我们还可以看出,南美洲亚马逊河流域热带雨林中的一只蝴蝶与北美德克萨斯的龙卷风看来是毫不相干的两种事物,却会有这样的联系,这也正验证了哲学理论中事物是普遍联系的观点。既然感觉毫不相干的事物都是相互联系的,那么“同一个角”的三角函数一定会有非常密切的关系!到底是什么关系呢?这就是这节课的课题。,引探练学导延引过程分析创设情景引入课题 气象学家洛伦兹1,10,引,探,练,学,导,延,过程分析,问题1:回顾三角函数的定义。,问题2:,角,终边与单位圆的交点,P,的坐标是什么?,设置目的:温故知新,三角函数定义是推导关系式的基础理论。,设置目的:单位圆中推导公式会用到P点的坐标,P的坐标是此处数与形的交汇点。,引探练学导延过程分析问题1:回顾三角函数的定义。问题2:角,11,过程分析,引,探,练,学,导,延,学生自主探究:,(1)sin90+cos90=?sin30+cos30=?sin45+cos45=?,(2)?tan30=?,(3)?tan45=?,(4)?tan45=?,过程分析引探练学导延学生自主探究:(1)sin90+cos,12,过程分析,引,探,练,学,导,延,题目做完以后让学生思考以下几个问题:,(1)、你还能举出类似于题目形式的例子吗?,(2)、从以上过程中,你能发现什么一般,规 律吗?你能用代数式表示这个规,律吗?你能用语言叙述这个规律吗?,(3)、你能证明自己所得到的规律吗?,设置目的:新课标强调学生的观察、思考、探索、推理,本题组通过设置问题串,使学生经历了根据特例进行归纳、建立猜想、用数学符号表示、并给出证明这一重要的数学探索过程。,,过程分析引探练学导延题目做完以后让学生思考以下几个问题:(1,13,引,探,练,学,导,延,过程分析,学生会很容易的猜测到:,公式证明:,我要采取教材上单位圆的数形结合法,加强对学生进行数形结合思想的渗透,让学生进一步体会数学是数与形的有机结合。用三角函数的定义证明,留给学生作为作业解决。并且让他们体会这两种方法的优劣,加深数形结合处理数学问题快捷的印象。,引探练学导延过程分析学生会很容易的猜测到:公式证明:我要采,14,引,探,练,学,导,延,过程分析,在直角三角形OMP中由勾股定理很容易得到:,。由正切函数的定义很容易得到:,。,具体证明时,让学生思考讨论后,自主对关系式进行证明,然后让学生主动介绍自己的证明过程,让别的学生评价,老师作评价与强调。,引探练学导延过程分析在直角三角形OMP中由勾股定理很容易得到,15,引,探,练,学,导,延,过程分析,为了加深对关系式的认识,在公式给出后设置了三点注意:,1、同角的理解:,2、是 的简写形式,与 不同。,3、公式可以变形使用,引探练学导延过程分析为了加深对关系式的认识,在公式给出后设置,16,渗透方程思想.通过公式的正用和逆用进一步提高学生运用知识的能力.,引,探,练,练,释,延,导,学,例,题,讲,解,提,高,能,力,过程分析,例题1、(课本例1、例2)(1)已知sin=4/5,且是第二象限的角,求的余弦值、正切值。,(2)已知tan=-,是第二象限角,求的正弦值、余弦值。,学生练习:已知sin=4/5,求的余弦值、正切值。,设置目的:求值时角的范围优先考虑是三角函数解题的一个基本策略,在学习中要不断渗透,同时培养学生分类讨论的思想。,渗透方程思想.通过公式的正用和逆用进一步提高学生运用知识的能,17,引,探,练,学,导,延,过程分析,例题2、(课本例4)化简,让学生先对所化简三角式特点进行观察分析:一个角,三种三角函数,分式。化简的目标是:三角函数种数尽量少,尽量由分式化整式,化简结果要尽量简洁。,设置目的:通过引导学生观察分析探索,帮助学生构建自己的解题思维模块,真正让学生,练习、化简,引探练学导延过程分析例题2、(课本例4)化简 让学生先对所化,18,引,探,练,学,导,延,过程分析,例题3、求证:,让学生思考讨论找解决办法,由题目的多种解法总结三角恒等式证明的三种基本思路:一边化一边;作差比较;两边化为同一式。,设置目的;通过一题多解,培养学生的发散思维,提高学生思维的深刻性、敏捷性。,练习求证:,三个例题以后让学生总结同角三角函数基本关系式的三种基本应用,。,引探练学导延过程分析例题3、求证:让学生思考,19,引,探,练,学,导,延,过程分析,课堂总结与升华,在下课前三分钟让学生总结本节课的主要内容与思想方法,让其他同学补充完善,老师作强调。,课堂总结:,知识:1、两个基本关系式的推导。,2、二个基本关系式的内容及公式的三个注意。,3、公式的三种应用。,思想方法:1、特殊-一般-证明,2、数形结合思想,3、三角式化简证明的思想做法。,6、作业布置:1、课后练习A中,1、2、3(1),2、用三角函数定义推导 证明公式,引探练学导延过程分析课堂总结与升华,20,Thank you!,感谢您的指导!,Thank you!感谢您的指导!,21,
展开阅读全文