《生物脱氮除磷》PPT课件

上传人:hao****021 文档编号:245227117 上传时间:2024-10-08 格式:PPT 页数:39 大小:527.50KB
返回 下载 相关 举报
《生物脱氮除磷》PPT课件_第1页
第1页 / 共39页
《生物脱氮除磷》PPT课件_第2页
第2页 / 共39页
《生物脱氮除磷》PPT课件_第3页
第3页 / 共39页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第十六章 生物脱氮除磷,氮和磷的排放会加速导致水体的富营养化,其次是氨氮的好氧特性会使水体的溶解氧降低,此外,某些含氮化合物对人和其他生物有毒害作用。因此,国内外对氮磷的排放标准越来越严格。本章阐述生物脱氮除磷技术。生物脱氮除磷技术是近20年发展起来的,一般来说比化学法和物理化学法去除氮磷经济,尤其是能有效地利用常规的二级生物处理工艺流程进行改造达到生物脱氮除磷的目的,是日前应用广泛和最有前途的氮磷处理方法。,第一节 生物脱氮原理及影响因素,一、生物脱氮原理,污水中氨主要以有机氮和氨氮形式存在。在生物处理过程中,有机氮很容易通过微生物的分解和水解转化成氨氮,即氨化作用。传统的硝化反硝化生物脱氮的基本原理就在于通过硝化反应先将氨氮转化为亚硝态氮、硝态氮,再通过反硝化反应将硝态氮、亚硝态氮还原成气态氮从水中逸出,从而达到脱氮的目的。,氮在水中的存在形态与分类,N,无机N,NO,x,-,-N,(硝态氮),T K N,(凯氏氮),总N,(TN),NH,3,-N,NO3-N,NO,2,-N,有机N (尿素、氨基酸、蛋白质),氨化与硝化反应过程,硝化反应的条件,(1)好氧状态:DO2mg/L;1gNH,3,-N完全硝化需氧4.57g,即硝化需氧量。,(2)消耗废水中的碱度:1gNH,3,-N完全硝化需碱度7.1g(以CaCO,3,计),废水中应有足够碱度,以维持pH值不变。,(3)污泥龄,C,(10-15)d。,(4)BOD520mg/L。,反硝化-1,反硝化包括异化反消化和同化反消化,以异化反消化为主,反硝化菌在DO浓度很低的环境中,利用硝酸盐中的氧作为电子受体,有机物作为碳源及电子供体而得到降解。当利用的碳源为甲醇时:,NO,3,-,+1.08CH,3,OH+0.24H,2,CO,3,0.056C,5,H,7,CO,2,+0.47N,2,+1.68H,2,O+HCO,3,-,NO,2,-,+0.67CH,3,OH+0.53H,2,CO,3,0.04C,5,H,7,CO,2,+0.48N,2,+1.23H,2,O+HCO,3,-,反硝化反应可使有机物得到分解氧化,实际是利用了硝酸盐中的氧,每还原1gNO,3,-,-N所利用的氧量约2.6g。,反硝化-2,当缺乏有机物时,则无机物如氢、Na,2,S等也可作为反硝化反应的电子供体,(1)反硝化菌属于异养型兼性厌氧菌,在缺氧条件下,进行厌氧呼吸,以NO,3,-,O为电子受体,以有机物的氢为电子供体。,(2)反硝化过程中,硝酸态氮有二种转化途径同化反硝化(合成细胞)和异化反硝化(还原为N2),但以异化反硝化为主。,(3)反硝化反应的条件,反硝化反应的条件,DO0.5mg/L,一般为0.2,0.3mg/L(处于缺氧状态),如果DO较高,反硝化菌利用氧进行呼吸,氧成为电子受体,阻碍NO,3,-,-O成为电子受体而使N难还原成N,2,。但是反硝化菌体内的某些酶系统组分只有在有氧条件下,才能合成。反硝硝化菌以在缺氧-好氧交替的环境中生活为宜。,BOD,5,/TN3,5,否则需另投加碳源,现多采用CH,3,OH,其分解产物为CO,2,+H,2,O,不留任何难降解的中间产物,且反硝化速率高。,目前反硝化投加有机碳源一般利用原污水中的有机物。,还原1g硝态氮能产生3.57g碱度,而在硝化反应中,1gNH,3,-N氧化为NO,3,-,-N要消耗7.14g碱度,在缺氧-好氧中,反硝化产生的碱度可补偿硝化消耗碱度的一半左右。,内源反硝化,微生物还可通过消耗自身的原生质进行所谓的内源反硝化,C,5,H,7,NO,2,+4NO,3,-,5CO,2,+NH,3,+2H,2,+4OH,-,内源反硝化的结果是细胞物质减少,并会有NH,3,的生成。,废水处理中不希望此种反应占主导地位,而应提供必要的碳源。,硝化、反硝化反应中氮的转化,表1 硝化过程中氮的转化,表2 反硝化反应中氮的转化,氮,的,氧,化,还,原,态,氨离子NH,4,+,羟胺NH,2,OH,0,+,硝酰基NOH,+,+,亚硝酸根NO,2,+,+,硝酸根NO,3,氮,的,氧,化,还,原,态,氨离子NH,4,+,羟胺NH,2,OH,0,N,2,+,硝酰基NOH,+,+,亚硝酸根NO,2,+,+,硝酸根NO,3,脱氮新理念,(1)短程硝化-反硝化 由传统硝化-反硝化原理可知,硝化过程是由两类独立的细菌催化完成的两个不同反应,应该可以分开;而对于反硝化菌,亚硝酸根或硝酸根均可以作为最终受氢体。该方法就是将硝化过程控制在亚硝化阶段而终止,随后进行反硝化,在反硝化过程将亚硝酸根作为最终受氢体,故称为短程(或简捷)硝化-硝化。,控制硝化反应停止在亚硝化阶段是实现短程硝化-反硝化生物脱氮技术的关键,其主要影响因素有温度、污泥龄、溶解氧、pH值和游离氨等。控制较高温度、较低溶解氧和较高pH值和极短的污泥龄条件等,可以抑制硝酸菌生成,使亚硝酸菌占绝对优势,从而使硝化过程控制在亚硝化阶段。,(2)厌氧氨氧化 厌氧氨氧化是荷兰Delft大学1990年提出的一种新型脱氮工艺。基本原理是在厌氧条件下以硝酸盐或亚硝酸盐作为电子受体,将氨氮氧化氮气,或者说利用氨作为电子供体将亚硝酸盐或硝酸盐还原成氮气。参与厌氧氨氧化的细菌是自养菌。厌氧氨氧化过程无需有机碳源在。,(3)亚硝酸型完全自养脱氮 基本原理是先将氨氮部分氧化成亚硝酸氮,控制氨根离子与亚硝酸根离子比例为1:1,然后通过厌氧氨氧化作为反硝化实现脱氮的目的。全过程为自养的好氧亚硝化反应结合自养的厌氧氨氧化反应无需有机碳源,对氧的消耗比传统硝化/反硝化减少62.5%,同时减少碱消耗量和污泥生成量。,二、硝化反硝化过程影响因素,1温度,硝化反应的适宜温度范围是3035,温度不但影响硝化茵的比增长速率,而且影响硝化菌的活性,在535的范围内,硝化反应速率随温度的升高而加快,仅超过30时增加幅度减少,当温度低于5时,硝化细菌的生命活动几乎停止。对于同时去除有机物和进行硝化反应的系统,温度低于15即发现硝化速率迅速降低,低温对硝酸菌的抑制作用更为强烈,因此在低温1214时常出现亚硝酸盐的积累。在3035较高温度下,亚硝酸菌的最小倍增时间要小于硝酸菌,因此,通过控制温度和污泥龄,也可控制反应器中亚硝酸菌的绝对优势。,反硝化反应的最佳温度范围为3545,温度对硝化菌的影响比反硝化菌大。,2溶解氧,硝化反应必须在好氧条件下进行,一般应维持混合液的溶解氧浓度为23mg/L,溶解氧浓度0.50.7 mg/L,是硝化菌可以忍受的极限。硝化可在高溶解氧状态下进行,高达60mg/L的溶解氧浓度也不会抑制硝化的进行,为了维持较高的硝化速率,污泥龄降低时要相应地提高溶解氧浓度。溶解氧对反硝化反应有很大影响,主要由于氧会同硝酸盐竞争电子供体。同时分子态氧也会抑制硝酸盐还原酶的合成及其活性,,3pH值,硝化反应的最佳pH值范围为7.58.5,硝化菌对pH值变化十分敏感,当pH值低于7时,硝化速率明显降低低于6和高于9.6时,硝化反应将停止进行。反硝化过程的最佳pH值范围为6.57.5,不适宜的PH值会影响反硝化菌的生长速率和反硝化酶的活性。当pH值低于6.0或高于8.0时,反硝化反应将受到强烈抑制。,4C/N比,C/N比值是影响硝化速率和过程的重要因素。硝化菌是自养菌,硝化菌产率或比增长速率比活性污泥异养菌低得多,若废水中BOD,5,值太高,将有助于异养菌迅速增殖,从而使微生物中的硝化菌的比例下降,一般认为,只有BOD,5,低于20mg/L时,硝化反应才能完成。反硝化过程需要充足的碳源,理论上lgNO,2,还原为N,2,需要碳源有机物2.86g。一般认为,当废水的BOD,5,/TKN值大于46时,可认为碳源充足,不需另外投加碳源,反之则要投加甲醇或其他易降解的有机物作碳源。,5、污泥龄,为使硝化菌能在连续流的反应系统中存活并维持一定数量,微生物在反应器的停留时间即污泥龄应大于硝化菌的最小世代期。一般应取系统的污泥龄为硝化最小世代期的两倍以上。较长的污泥龄可增强硝化反应的能力,并可减轻有毒物质的抑制作用。,6抑制物质,对硝化反应有抑制作用的物质有:过高浓度氨氮、重金属、有毒物质以及有机物。一般来说,同样毒物对亚硝酸菌的影响比对硝酸菌大。反硝化菌对有毒物质的敏感性比硝化菌低很多,与一般好氧异养菌相同。在应用一般好氧异养菌文献数据时,应该考虑驯化的影响。,生物脱氮工艺包括含碳有机物的氧化、氨氮的硝化、硝态氮的反硝化等生物过程,即碳化-硝化-反硝化过程。从完成这些过程的反应器来分,脱氮工艺可分为活性污泥脱氮系统和生物膜脱氮系统,其分别采用活性污泥法反应器与生物膜反应器作为好氧/缺氧反应器,实现硝化/反硝化以达到脱氮的目的。从完成这些过程的时段和空间不同,活性计泥脱氮系统的碳化、硝化、反硝化可在多池中进行,也可在单池中进行。,三级活性污泥生物脱氮工艺,三、生物脱氮工艺,传统活性污泥法脱氮工艺,二级活性污泥生物脱氮工艺,分建式缺氧好氧活性污泥生物脱氮,合建式A,1,/O工艺,优点:,同时去除有机物和氮,流程简单,构筑物少,只有一个污泥回流系统和混合液回流系统,节省基建费用。,反硝化缺氧池不需外加有机碳源,降低了运行费用。,因为好氧池在缺氧池后,可使反硝化残留的有机物得到进一步去除,提高了出水水质(残留有机物进一步去除)。,缺氧池中污水的有机物被反硝化菌所利用,减轻了其它好氧池的有机物负荷,同时缺氧池中反硝化产生的碱度可弥补好氧池中硝化需要碱度的一半。(减轻了好氧池的有机物负荷,碱度可弥补需要的一半)。,缺点:,脱氮效率不高,一般,N,=(7080)%,好氧池出水含有一定浓度的硝酸盐,如二沉池运行不当,则会发生反硝化反应,造成污泥上浮,使处理水水质恶化。,第二节 生物除磷原理及影响因素,一、生物除磷原理,有一类特殊的细菌,在厌氧状态释放磷,在好氧状态可以过量地、超出其生理需要地从污水中摄取磷酸盐。生物除磷主要由一类统称为聚磷菌的微生物完成。该类微生物均属异养型细菌。在厌氧区内,聚磷菌在既没有溶解氧也没有原子态氧的厌氧条件下,吸收乙酸等低分子脂肪酸(来自兼性细菌水解产物或来自原污水),并合成聚,-,羟基丁酸盐(PHB)贮于细胞内,所需的能量来源于菌体内聚磷的分解,并导致磷酸盐的释放。在好氧区内,聚磷菌以游离氧为电子受体,将积贮在胞内的PHB好氧分解,并利用该反应产生的能量,过量摄取水体中的磷玻盐,在胞内转化为聚磷,这就是好氧吸磷,好氧吸磷量大于厌氧放磷量,通过剩余污泥排放可实现生物除磷的目的。,在厌氧状态下放磷愈多,合成的PHB愈多,则在好氧状态下合成的聚磷量也愈多,除磷的效果也就愈好。,二、生物除磷影响因素,1溶解氧和氧化态氮,溶解氧分别对摄磷和放磷过程影响不同。在厌氧区中必须控制严格的厌氧条件,既没有分子态氧,也没有化合态氧。溶解氧的存在,将抑制厌氧菌的发酵产酸作用和消耗乙酸等低分子脂肪酸物质;硝态氮的存在,影响聚磷菌的代谢,也会消耗部分乙酸等低分子脂肪酸物质而发生反硝化作用,都影响磷的释放,从而影响在好氧条件下对磷的吸收。在好氧区中要供给足够的溶解氧,以满足聚磷菌对PHB的分解和摄磷所需。一般厌氧段的溶解氧应严格控制在0.2mgL以下,而好氧段的溶解氧控制在2.0mgL左右。,2污泥龄,由于生物脱磷系统主要是通过排除剩余污泥去除磷的,因此剩余污泥量的多少将决定系统的脱磷效果。一般污泥龄较短的系统产生较多的剩余污泥,可以取得较高的脱磷效果。短的泥龄还有利于好氧段控制硝化作用的发生而利于厌氧段的充分释磷,因此,仅以除磷为目的的污水处理系统中,一般宜采用较短的泥龄。研究表明,当污泥龄为30天时,除磷率为40,污泥龄为17天时,除磷率为50%,污泥龄降至5天时,除磷率可提高到87%。,3BOD负荷和有机物性质,一般认为,较高的BOD负荷可取得较好的除磷效果,有人提出BOD/TP20是正常进行生物除磷的低限。不同有机物为基质对磷的厌氧释放及好氧摄取也有差别。一般低分子易降解的有机物易被聚磷菌
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!