第五部分浮选二课件

上传人:29 文档编号:242636615 上传时间:2024-08-30 格式:PPT 页数:175 大小:4.13MB
返回 下载 相关 举报
第五部分浮选二课件_第1页
第1页 / 共175页
第五部分浮选二课件_第2页
第2页 / 共175页
第五部分浮选二课件_第3页
第3页 / 共175页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,第五部分浮选二课件,1,本章基本内容,本章基本内容,2,第五部分浮选二课件,3,第一节 固、液、气各相性质,浮选是包括固、液、气三相体系的过程,浮选中矿物表面性质差异是主要影响因数,同时又与液相和气相性质密切相关 。,一、矿物的结构和性质,二、液相的结构和性质,三、气相及其性质,固、液、气,各相性质,第一节 固、液、气各相性质 一、矿物的结构和性质固、液、气,4,一、矿物的结构和性质,1、矿物的价键类型与晶体结构,矿物表面性质是决定矿物向气泡附着难易程度的主要因素,而影响矿物表面性质的主要因素是矿物的,化学在组成和结构,。,矿物晶体结构矿物都是由离子、原子、分子等质点,以一定的键联系起来的。,一、矿物的结构和性质,5,离子键或离子晶格,共价键或共价晶格,分子键或分子晶格,金属键或金属晶格,金刚石、石英、金红石,离子键或离子晶格 共价键或共价晶格 分子键或分子晶格 金属键,6,离子晶体,原子晶体,分子晶体,其它晶体,离子晶体由阴离子和阳离子组成,它们之间以静电引力相结合。,断裂时,沿离子界面断开,断裂后表面露出的是不饱和的离子键。没有方向性,配位数较高,硬度较大,极性较强。,代表矿物:岩盐(NaCl)、萤石(CaF,2,)、闪锌矿(ZnS)、金红石等。,原子晶体由原子组成,靠共用电子对结合在一起。,性质断裂时,必须破坏共价键,极性较强,断裂后表面露出的是不饱和的离子键。没有方向性,配位数很少,硬度大。,代表矿物:金刚石(C);离子和共价键的混合体石英、锡石(SnO,2,)等。,分子晶体的晶格中分子是结构的基本单元,它们之间以分子力(范德华力)相结合。,性质:断裂时,断裂后表面露出的是弱的分子键。没有自由电子,晶体为不良导体。硬度较小,对水的亲和力弱。,代表矿物:石墨(C)、辉钼矿等。,金属晶体的结点为金属阳离子,金属子与周围的自由运动的电子相互作用。,性质:没有方向性和饱和性,良导体。断裂时,形成强不饱和键。共价键,极性较强,断裂后表面露出的是不饱和的离子键。,代表矿物:自然金(Au);自然铜(Cu)等。,离子晶体原子晶体分子晶体其它晶体 离子晶体由阴离子和阳,7,实际上,自然界矿物很少由单一的键组成,常见的矿物多为混合键或过渡键型晶体。,硫化矿物和氧化矿物多为离子-共价键或离子-共价键;,氢氧化物和含氧盐类矿物多离子-分子键或离子-共价键。,8,2 价键特性与解离,1、离子晶体解离,(1)不会使基团断裂。,(2)往往沿阴离子交界面断裂。,(3)当晶格中有不同的阴离子交界层或者各层间的距离不同时,常沿较脆弱的交界层或距离较大的层面间断裂。,图2-1 典型矿物晶格及可能断裂面,2 价键特性与解离1、离子晶体解离 (1)不会使基团断裂,9,相邻原子距离较远的层面,或键能弱的层面。,3、共价键晶体解离,相邻原子距离较远的层面,或键能弱的层面。 3、共价,10,4、矿物表面键能与可浮性,经破碎解离出来的矿物表面,由于晶格受到破坏,表面有剩余的不饱和键能,因此,具有一定的“表面能”。这种表面能对矿物与水、溶液中的离子和分子、浮选药剂及气体等的作用起决定性影响。,矿物晶格破裂时,由于暴露在表面的键型不同,矿物表面性质也就不同,其规律大致如下:,4、矿物表面键能与可浮性,11,当断裂面以离子为主,表面不饱和键具有强的静电吸引,为强的不饱和键.,当断裂面为共价键为主,表面不饱和键多为原子键,该类表面有较强静电力或偶极作用,亦为强不饱和键.,当断裂面以分子键为主,其表面不饱和键多为弱键,如矿物表面以定向力,诱导力为主,此种弱键又强于色散力为主的弱键.,当断裂面以离子为主,表面不饱和键具有强的静电吸引,为强的不饱,12,较强的共价键,或离子键,较弱的分子键,矿物表面有较强的极性和化学活性,对极性分子有较强的吸引力,其表面亲水性强,故称这类键能表面的矿物表面为亲水性表面。,矿物表面的极性及化学活性较弱,对极性水分子的吸引力小,不易被水润湿。称这类矿物表面为疏水性表面。,天然可浮性,未经任何药剂处理的矿物表面的可浮,。,较强的共价键 较弱的分子键 矿物表面有较强的,13,5、矿物表面的不均匀性与可浮性,浮选研究常常发现同一种矿物可浮性差别相当大,这是因为实际矿物很少是理想典型的纯矿物。他们存在着许多物理不均匀性、化学不均匀性和物理化学不均匀性(半导体),从而使其可浮性发生各种各样的变化。,5、矿物表面的不均匀性与可浮性 浮选研究常常发现同,14,矿物表面物理不均匀性,(1)矿物的物理不均匀性,矿物在生成及经历地质矿床变化过程中,矿物表面呈现宏观不均匀性和晶体产生各种缺陷、空位、夹杂、位错、以及镶嵌等现象,通称为物理不均匀性。,(2)矿物表面宏观不均匀性,与矿物表面形状(有无凸部、凹部、边角等)有关,也与是否存在孔隙、裂缝有关。当晶体沿不同方向分裂时,显示出能量性质的各向异性。显然,在边上、角上和凸部能量状态都显著不同,这些位置上的原子与晶体中其他原子相比,其吸附活性也不同。,在矿物破碎磨矿时,磨碎体打击的方向都是紊乱的,所以经磨矿后矿物表面的不均匀性加剧。,矿物表面物理不均匀性 (1)矿物的物理不均匀性,15,缺陷排列,构造缺陷,(3) 缺陷排列和构造残缺,位错,镶嵌结构,缺陷排列构造缺陷(3) 缺陷排列和构造残缺 位错镶嵌,16,矿物表面化学不均匀性,在实际矿物中,各种元素的键合,不像矿物化学分子式那样单纯,常夹杂许多非化学分子式的非计量组成物。Cu、Pb、Zn、Hg、Ag对S有很强的键合强度,具有形成硫化物的条件,因而常形成这类金属的硫化矿物。但是As、 Sb、Bi却以络合硫阴离子的形式与Cu+、Pb+、Ag+等形成含硫矿物,并且还可呈AsS、 As2S3 、 Bi2S3 等形式。,硫化矿中,有些非计量夹杂物往往具有重要的意义。如磁黄铁矿中的镍,黄铁矿及黄铜矿中的金,方铅矿中的银等。掌握金属共生规律,认识矿物的化学不均匀性与可浮性的关系,对综合回收有用成分,提高选矿效果,具有重大的实际意义。,矿物表面化学不均匀性 在实际矿物中,各种元素的键合,17,矿物表面的不均匀性,均对浮选性质发生影响。近代采用示踪原子研究药剂和矿物的作用表明,药剂在矿物表面的分布是不均匀的,经常呈斑点状。不仅也已证明晶格缺陷、杂质、半导体、位错等直接影响可浮性,并可用这些性质来解释浮选剂与矿物表面的作用原理。,矿物物理不均匀性和矿物表面化学不均匀性对浮选的影响,我们用下面的例子来说明:,18,右图是一种矿物物理不均匀性与一种浮选捕收剂,-,黄药的反应示意图。,由于阳离子空位,使化合价及电荷状态失去平衡,在空位附近的电荷状态使硫离子对电子有较强的吸引力,而阳离子则形成较高的电荷状态及较多的自由外层轨道。形成对黄原酸(阴)离子较强的吸附中心。如果,相反缺陷形成阴离子空位或阳离子间隙,则不利于黄原酸(阴)离子的吸附。对硫化矿而言,缺陷除影响捕收剂吸附外还影响氧化还原状态及界面电化学反应。,图2-2 方铅矿的缺陷与黄药离子反应,右图是一种矿物物理不均匀性与一种浮选捕收剂-黄药的反应,19,如图所示,不同组分及产地的磷灰石,其可浮性有很大差别,如前所述,方铅矿、闪锌矿、黄铜矿、黄铁矿等许多硫化矿物的可浮性异常都与化学组成的不规则性有关。例如,磷灰石有两种:,OH,磷灰石和,F,磷灰石。它们的成分分别为,Ca5(PO4)3OH,和,Ca5(PO4) 3F,,其中的,Ca2+,可以被下列成分所置换:,Mn,、,Sr,、,Mg,、,Na,、,K,、,Cu,、,Sn,、,Pb,和稀土元素等,,PO43-,可被,SO42-,、,SiO44-,、,CO32-,、,AsO43-,、,VO43-,及,CrO42-,等所取代;,F-,可被,OH-,、,Cl-,所取代。这些取代,使磷灰石有广泛的化学不均匀性,从而具有不同的可浮性。,如图所示,不同组分及产地的磷灰石,其可浮性有很大差别,20,加入杂质或浸除表面杂质、用放射能照射、加热或加压等方式来改变晶格缺陷及位错,从而人为的改变矿物可浮性。,通过,辐射预处理法,调节矿物性质(如金矿、锰矿)已作为矿物选别的新理论研究在国际上得到重视,同样微波能预处理矿物(包括有色金属和黑色金属)已正在成为研究热点。,6、通过矿物表面性质的改变, 改变矿物的可浮性,加入杂质或浸除表面杂质、用放射能照射、加热或加压等,21,将微波技术用于贵州难选金,拓宽了研究开采利用难选金矿的视野,以熟石灰作固化剂,金总回收率为92,采用0.68KVA和5KVA的矿冶专用微波炉,固硫率95,固砷率95,充分论证了QWD工艺,微波技术,将微波技术用于贵州难选金,拓宽了研究开采利用难选,22,在电磁波范围的各种射线无线电波、超声波、红外线、可见光、紫外线、X射线、射线、射线、射线、中子流、以及激光技术,都可用来作为矿石预处理。,“微波”是指频率300兆赫到300千兆赫之间的电磁波。凡低于300兆赫的为无线电波,包括长波、中波和短波,凡高于300千兆赫的则属于红外线或可见光等。微波所对应的波长为1MM至1M。,微波加热是利用直流电使磁控管产生微波功率通过波导输送到微波加热器,被加热物料在微波场中得到加热。,在电磁波范围的各种射线无线电波、超声波、红外线、,23,当微波作用于被加热物料时,就把一部分能量消耗在物料内,物料吸收微波功率后,极性分子在外加电场的变更作用下,不断变化摆动,产生类似于摩擦的作用,加剧热能的产生而致使物料温度升高,无论是物料所吸收微波功率的大小,还是物料温升的高低,在外加电场一定时,只取决于物料的自身性质(特别是介质损耗系数和物料介电常数均不一样),就势必出现选择性吸波和选择性温升现象。,当微波作用于被加热物料时,就把一部分能量消,24,微波长极短,它可以渗透到分子内部,使发热从分子内部开始发生。这样,一方面不需要热传导,热效率高,能耗低;另一方面,即使是共生在同一矿石中的不同组分,也会出现不同的温升变化,从而加剧了结合面的软化。强化矿石的选择性磨细,改善矿石碎磨性能,降低后续的磨矿能耗。,经微波照射后,不同矿物吸收微波的能力不同,产生局部应力,导致矿石破裂、结构疏松、并因此而改善矿物的渗透性能。,微波预处理是当代乃至21世纪最佳处理工艺,堪称矿业技术的一场革命。,微波长极短,它可以渗透到分子内部,使发热从分子内,25,硅酸盐浮选原理,由孙传尧院士、印万盅博士著的硅酸盐浮选原理一书是由科学出版社出版于2019年出版的,请大家抽空阅读,26,二、 液相的结构和性质,浮选是液相为水,液体水的结构和性质对矿物表面性质,浮选药剂的性质及浮选过程均产生极大的影响,决定了浮选的特征.,1 、水分子的结构特点,水分子的强极性的结构特点,导致了与浮选有关的主要性质:具有很高的介电常数、很高的溶解能力和很强的水分子间的缔合作用。,二、 液相的结构和性质 浮选是液相为水,液体水的结,27,2、 水分子对矿物表面的作用,矿物破裂后,其断裂面上具有不饱和键,置于水中,矿物表面的不饱和键与水偶极子发生作用,得到部分补偿。,矿物由于构成其晶格结构的不同,当矿物破裂后,其断裂面上希望得到补偿的不饱和健特性不同,因而矿物表面的极性也有差别。水分子则会根据矿物表面的极性不同在其表面进行不同形式的定向排列,形成不同性质的水化层或水化膜,使矿物表面的自由能发生变化,2、 水分子对矿物表面的作用 矿物破裂后,其断裂面,28,矿物断裂面上不饱和程度高时,水分子易与其作用,作用后形成水化层,取代原先表面上的空气,且作用后的固一水界面能小于作用前的固一气界面能,因而属自发过程;而不饱和程度低的表面则相反,水分子不易与其作用,作用前后表面自由能增加,所以水难以自发取代原先矿物表面的空气,形成水化层水分子与矿物表面的作用严重影响矿物与气泡的接触过程与稳定状态。,矿物断裂面上不饱和程度高时,水分子易与其作用,作用,29,3、 水的溶解能力,水会对矿物表面的一些离子溶解,从而改变矿物表面的化学组成、界面电性及液相的化学组成,结果就改变了矿物在浮选过程中的行为。,对一般矿物,当水化能高于其晶格能时,矿物即发生溶解,一直进行到被溶解的离子在固、液两相的化学位相等时为止。除盐类和氧化程度较高的矿物外,多数矿物的溶解度均不高。矿物的溶解度除受上述晶格能、水化能的影响之外,还受固体颗粒和水中含有的其他化学元素(通常称之为杂质)的影响当水中含有矿物组成的同名离子时,水对矿物的溶解能力降低,而含有其他离子时,可以提高水对矿物的溶解能力。,3、 水的溶解能力 水会对矿物表面的一些离子溶解,从而改,30,三、气相及其性质,浮选过程中,空气所形成的气泡是一种选择性的运载工具。矿粒表面粘附了气泡以后,其可浮性改变。气泡还可以由于压力降低从溶液中析出,并优先地吸附到矿物的疏水表面上,促进矿粒与大气泡的粘附。气相在溶液中必须形成足够数量的气泡,保证上浮的矿物有足够的气泡面积供其粘附。气泡的粒径应与浮选矿物的粒度相适应,并有一定数量的空气溶解后析出的微泡,才能保证浮选效果最好。,三、气相及其性质 浮选过程中,空气所形成的气泡,31,SECTION 2,BASIC THEORY OF FLOTATIONSURFACE WETTABILITY THEORY,SECTION 2 BASIC THEORY OF FLO,32,Froth flotation involves the aggregation of air bubbles and mineral particles in an aqueous medium with subsequent levitation of the aggregates to the surface and transfer to a froth phase whether or not bubble attachment and aggregation occur is determined by the degree to which a particles surface is wetted by water. When a solid surface shows little affinity for water, the surface is said to be hydrophobic, and an air bubble will attach to the surface. The stability of this attachment is measured by the contact angle, ,Figure flowing.,Froth flotation involves the a,33,Schematic representation of the equilibrium contact,between an air bubble and a solid immersed in a liquid,Schematic representation of th,34,Young Equation,or,Young Equationor,35,When the air bubble does not displace the aqueous phase, the contact angle is zero. On the other hand, complete displacement of the water represents a contact angle of 180 . Values of contact angle between these two extremes provide an indication of the degree of surface hydration, or, conversely, the hydrophobic character of the surface.,There are no known solids that exhibit a contact angle greater than 108 which is the valus obtained with Teflon (1).There are a few naturally hydrophobic minerals, for example, coal ,molybdenite, sulfur and talc, all of which exhibit contact angles less than 108. Most minerals are hydrophilic and, as such, must acquire their hydrophobic,When the air bubble,36,flotation,Surface,flotation,Froth flotation,Oil,flotation,No reagent,Neutral oil,Reaction with reagent,Wettability vs floatability,flotationSurface Froth flotati,37,Character by the adsorption of surfactants, termed collectors , in order for air bubble attachment to occur. The three-phase equilibrium between the air bubble, mineral surface, and water can be described by the respective interfacial tensions according to Youngs equation:,The free energy change per unit area corresponding to the attachment process (the displacement of the water by the air bubble ) is referred to as dupres equation:,Character by the ads,38,The free energy change can then be expressed in terms of the contact angle,And the attachment process is seen to be spontaneous for all finite contact angles. A detailed discussion of wetting and the interpretation of contact angle measurements are presented by Leja,The free energy chan,39,The free energy change for the bubble attachment process,G , can also be described in terms of the work of adhesion , WA ,and the work of cohesion, WA of water.,G =W,A,W,C,For attachment to be effected, the work of adhesion of water, WA, must be less than the work of cohesion of water, that is,W,A,W,C,The free energy cha,40,The work of adhesion is defined as the work required to remove liquid from the solid surface leaving an adsorbed water layer in equilibrium with a saturated gas phase .the work of adhesion has been shown to consist of three components:,W,A,= W,I,+ W,H,+ W,D,W,I, ionization energy, arising from coulombic attractive forces at the solid surface,W,H,hydrogen bond energy, arising from coordination forces ,the dipole interaction of the solvent with the solid surface, and,W,D,dispersion energy, arising from solvent inter-action with induced dipoles at the solid surface.,The work of adhesio,41,In addition to these phenomena which determine whether or not water is displaced from the surface by an air bubble, charge separation between the solid and aqueous phases occurs, and the solid acquires a surface charge with respect to the aqueous phase. Frequently, the mobility of the charge on the solid phase is restricted and limited to surface lattice atoms, whereas the charge in the aqueous phase is mobile and distributes itself in a region adjacent to the solid surface.,In addition to thes,42,自然硫、石腊,自然硫、石腊,自然硫、石腊,自然硫、石腊,自然硫、石腊,自然硫、石腊,B型,B型,B型,B型,B型,B型,大, 90110,大, 90110,大, 90110,大, 90110,大, 90110,大, 90110,1,1,1,1,1,0,矿化 = SG - SL - LG 0 矿,44,因0sin1,只要有足够大的接触角及液气表面张力,LG,,就能使颗粒浮起。颗粒越粗(l大)要求的及,LG,越大。,表层浮选,粒 浮,l,3,g l,3,g4,LG,sin,l,3,g l,2,hg+4l,LG,cos(180-) = l,2,hg-4l,LG,cos,因0sin1,只要有足够大的接触角及液气表面张力LG,45,Table2-2 contact angle of some minerals,mineral,0,mineral,0,sulfur,78,Pyrite,30,talc,64,barite,30,molybdenite,60,calcite,20,galena,47,limestone,010,sphalerite,46,quartz,04,fluorite,41,mica,0,hydrophlic,Table2-2 contact angle of s,46,表2-2所列值与实际浮选的可浮性次序大致相当,故通过对矿物值的测定与研究,即可掌握各个矿物的可浮性,由表1也可知,大部分矿物是亲水的,只有少部分为天然疏水的。,一般地:,70,0,矿物天然可浮性好,60,0,70,0,矿物天然可浮性中等,60,0,矿物天然可浮性差,亲水性矿物:小,比较难浮,疏水性矿物:大,比较易浮,表2-2所列值与实际浮选的可浮性次序大致相当,,47,实际生活中表明“水油不相容”的现象,在矿物的表面性质中也同样存在,即亲水性矿物不亲油,而疏水性矿物则亲油,这是气泡与油具有的共同性质。由于多数矿物不是自然疏水的, 因此必须在矿浆中添加各种浮选药剂来选择性地控制各种矿物表面的亲水性,获得所需要的矿化能力。在浮选过程中加入捕收剂后,扩大了有用矿物与脉石矿物之间的这种差异是进行矿物浮选的基础措施。,实际生活中表明“水油不相容”的现象,在矿物的表面,48,SECTION 3 BASIC THEORY OF FLOTATIONSURFACE ELECTRICAL THEORY (ELECTRICAL DOUBLE LAYER),SECTION 3 BASIC THEORY OF FLO,49,Section 3 Basic theory of flotationSurface electrical theory (Electrical Double Layer),In the development of surface charge, whether by specific chemical interaction, preferential dissolution of surface ions, or lattice substitution, the solid surface acquires a potential with respect to the solution. The surface charge is compensated by an equal charge distribution in the aqueous phase. The charge in solution together with the charge on the solid surface is referred to as the electrical double layer. A schematic representation and potential drop across the double layer are presented in Figure flowing.,Section 3 Basic theory,50,Fig2-5.Schematic representation of the double layer and potential drop across the double layer; (a) surface charge (b) Stern layer and (c) diffuse layer of counter ions,Fig2-5.Schematic representatio,51,Shown are potential determining ions at the surface, a layer of adsorbed counter ions, and counter ions arranged diffusely in the solution surrounding the solid. Potential determining ions are those ions which establish the surface charge. These ions include ions of which the solid is composed; hydrogen and hydroxyl ions; collector ions that form insoluble metal collector salts with ions comprising the mineral surface; and ions capable of forming complex ions with surface species.,Counter ions are those ions which have no special affinity for the surface and are adsorbed by electrostatic attraction. Examples are chloride ion and collector anions at low concentration adsorbed on a positively charged surface.,Shown are potent,52,1,2,The potential difference between the surface and the bulk solution,3,The potential difference between a hypothetical plane representing the closest distance of approach of hydrated counter ions to the surface and the bulk solution, surface charge (0),a layer of adsorbed counter ions, and counter ions arranged diffusely in the solution surrounding the solid.,(2) Stern layer,(),(3)diffuse layer of counter ions (),2 potential of the double layer,12The potential difference bet,53,It is not possible to measure o for non-conductive solids. However, it is possible to calculate this value once the pzc (point-of-zero-charge) for the solid is known. That is, the dependence of o on the activity of potential determining ions is given by flowing,0,=,where R is the gas constant, T is absolute temperature, n is valence, F is the Faraday constant, a+ and a are the activities of potential determining ions in solution and and are the activities of potential determining ions at the pzc.,It is not possible to measure,54,since surface potentials are not measured directly, the electro-kinetic behavior of mineral particles is characterized by zeta potential measurements. These measurements are made dither by electro-phoresis or by a streaming potential technique. In the case of electrophoresis, the electrophoretic mobility is measured by tracking the velocity of the particles is the absence of convective flow under a potential gradient. The zeta potential is calculated from the relationship,Where = zeta potential, volt, = solution viscosity, poise,D = dielectric constant,V = particle velocity, cm/sec,E = potential gradient, volt/cm,since surface potentials are n,55,The majority of solids possess an electrical charge on their surfaces in aqueous medium with the consequence that extensive hydration of their surfaces occurs. As a result, collectors must be added to render the surfaces sufficiently hydrophobic for air bubble attachment to occur.,Depending on concentration and hydrocarbon chain length. Collector ions may be present on the surface as individual ions or as aggregates of ions, termed hemi-micelles. These phenomena are demonstrated well by the data of wakamatsu and Fuerstenau,The majority of solids possess,56,The adsorption density of sulfonate ions adsorbed in Region I may be calculated by the following relationship:,i,=2r,i,C,i,exp( ),Where i is the adsorption density of species i (mole/cm2); r is the radius of the adsorbed counter ion (cm); C is the concentration in the bulk solution (mole/cm3); n is valence of the ion ; is the zeta.,The adsorption density of sulf,57,When species are adsorbed specifically at the surface, a force in addition to electrostatic force is involved, and Equation 9 takes on the following form:,i,=2r,i,C,i,exp ,where is the specific adsorption potential. In the case of hemi-micelle formation, van der waals forces assume importance, and is equal to 0.62 kcal per mole per mole per CH2 group. This is the free energy decrease that the system experiences when the hydrocarbon chains are removed from water.,When species are adsorbed spec,58,Discuss and draw Schematic representation of contact angle,Write the hydrophlic equation,Discuss and draw Schematic representation of the,Double layer,阐述“键能因素”及“天然可浮性”的概念?,阐述矿物内部结构,表面键能与可浮性的关系?,矿物的物理不均匀性主要有那些?并矿物的物理性质与可浮性的关系?,矿物的化学不均匀性主要有那些?并矿物的化学性质与可浮性的关系?,Discuss and draw Schematic re,59,第五部分浮选二课件,60,第一节,浮选药剂的作用与分类,一 浮选药剂的作用,矿物名称,接触角,/(,O,),煤,硫,滑 石,方铅矿,辉钼矿,闪锌矿,萤 石,黄铁矿,重晶石,方解石,石灰石,石 英,云 母,6090,78,64,60,47,46,41,30,30,20,010,04,0,表3-1 常见矿物接触角,多数矿物不是自然疏水的, 因此必须在矿浆中添加各种浮选药剂来选择性地控制各种矿物表面的亲水性,表面润湿理论;,表面电性理论(双电层理论);,浮选剂在矿物表面吸附理论。,第一节 浮选药剂的作用与分类一 浮选药剂的作用矿物名称接,61,什么是浮选药剂?,在浮选过程中,用来改变矿物表面物理化学性质或创造条件调节矿物可浮性的药剂。,图3-1 浮选泡沫,什么是浮选药剂?在浮选过程中,用来改变矿物表面物理化学性质或,62,1 浮选药剂的作用与分类,Frother,Frothers are used to help maintaining a reasonably stable froth,Modifiers or regulators are added to control the flotation process. These either activate or depress mineral attachment to bubbles and to regulate the pulp pH, so they are classed accordingly as activators, depressants, pH-regulating agents, dispersants, etc.,Collector,regulator,Collectors adsorb selectively on mineral surfaces, rendering them hydrophobic and facilitating bubble attachment.,Flotation,reagent,1 浮选药剂的作用与分类FrotherFrothers ar,63,按用途分类,系列,种类,典型代表,捕收剂,非离子,烃类油,脂类,煤油、柴油,黄原酸脂、烃基硫代氨基甲酸酯,阴离子,巯基类,烃基酸及皂,黄药、黑药,油酸、烃基硫酸钠,阳离子,胺类衍生物,混合胺、月桂酸,起泡剂,表面活性剂,醚类,醇类,醚醇类,丁醚油,松醇油、混合醇,醚醇油,非表面活性剂,酮醇类,双丙酮醇油,调整剂,活化剂,无机盐类,硫酸铜、硫化钠,抑制剂,无机盐类,无机物,硫酸钠、水玻璃,丹宁、淀粉,pH调整剂,电解质,酸、碱,絮凝剂,无机电解质,天然高分子,合成高分子,石灰、明矾,淀粉、骨胶,聚丙烯酰胺、聚氧乙烯,分散剂,无机盐类,高分子化合物,水玻璃、苏打,各类聚磷酸盐,按用途分类系列种类典型代表非离子烃类油煤油、柴油阴离子巯基类,64,原矿(方铅矿、闪锌矿、萤石、石英),碳酸钠:调pH 7-7.5,硫酸锌(抑制闪锌矿),黄药+黑药(捕收方铅矿),松醇油,碳酸钠:调pH 8左右,硫酸铜(活化闪锌矿),黄药,松醇油,方铅矿,闪锌矿,碳酸钠:调pH8-9,水玻璃(抑制石英),油酸,萤石,尾矿(石英等),捕收剂,起泡剂,活化剂,抑制剂,pH调整剂,原矿(方铅矿、闪锌矿、萤石、石英)碳酸钠:调pH 7-7.5,65,一、捕收剂的分类与其结构特点,二、硫化矿捕收剂,1 硫化矿捕收剂类型,2 硫化矿捕收剂作用原理,三、非硫化矿捕收剂,1 氧化矿捕收剂,2 天然疏水性捕收剂,一、捕收剂的分类与其结构特点,66,ionising,1 Collector,O,O,O,Collectors,Non-ionising,Liquid,non-polar hydrocurbons which do not dissociate in water,Anionic,Cation is water capellent.,Based on pantdvalent mtrogen,Oxyhydry1,Based on organic,Sulpho acid groups,Sulphydry1,Based on bivalent sulphur,Carboxytic,Sulphates,Sulphonates,Xunthates,Dithiophosphates,Cationic,C,O,O,C,S,S,O,P,S,S,O,O,S,O,O,O,O,S,根据捕收剂分子结构和解离特性分类,一、捕收剂的分类与其结构特点,ionising1 Collector OOOCollec,67,根据不同矿物可浮选性及矿物与药剂的作用机理分类,硫化矿捕收剂,非硫化矿捕收剂,氧化矿捕收剂,天然疏水性捕收剂,不溶性氧化矿和硅酸盐矿物 捕收剂,微溶盐矿物,可溶盐矿捕收剂,捕收剂,根据不同矿物可浮选性及矿物与药剂的作用机理分类硫化,68,一、捕收剂结构特点,捕收剂分子结构,异极性有机化合物,H,Polar group,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,C,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,H,C,H,C,O,O,Anion,Cation,Ng,Non-polar group,H,The structure of sodium oleate, and anionic collector in which the water-repellent hydrocarbon radical constitutes the non-polar part of the molecule, is shown in Fig.,一、捕收剂结构特点捕收剂分子结构异极性有机化合物HPolar,69,Because of chemical, electrical, or physical attraction between the polar portions and surface sites, the collectors adsorb on the particles with their non-polar ends orientated towards the bulk solution, thereby imparting hydrophobicity to the parhctes,Because of chemical, electric,70,1 硫化矿捕收剂类型,硫化矿捕收剂,1 黄药类,2 黑药类,3 硫氮类,4 硫胺酯,5 硫醇类,6 硫脲及其衍生物,硫化矿捕收剂常用的是硫代化合物类捕收剂, 特征是分子量小,烃链短,极性亲固基都含有二价硫离子,水解后生成含 -SH基的产物,故通常称为巯基化合物捕收剂。,1 硫化矿捕收剂类型硫化矿捕收剂1 黄药类2 黑药类3 硫氮,71,C,H,H,C,H,H,H,O,C,S,S,Na(K),Non-polar,Polar,Cation,(b),(1)黄药的结构、组成、名称及制备,黄药学名黄原酸盐。按化学组成也称为烃基二硫代碳酸盐。黄药的一般化学组成与结构式如下:,2,黄药类(,xanthogenate,),图,(a),式中R为烃基,Me为Na,或K,+,,-OCSS-为亲固基,烃基为烷烃基,,(b)图,为乙基黄药。,R,O,C,S,S,Me,Non-polar,Polar,Cation,(a),CHHCHHHOCSSNa(K)Non-polarPolar,72,黄药的名称:,按烃基中碳原子数的多少,在黄药前冠以不同名称,C,2,H,5,OCSSNa称乙基黄药,C,4,H,9,OCSSNa称丁基黄药。,黄药有钾盐和钠盐两种,分别称之为钾黄药和钠黄药。,黄药的制备:,制造黄药的原料是醇、烧碱(NaOH)和二硫化碳(CS,2,)。工业上一般采用直接合成法生产黄药,反应如下:,ROH+NaOH+CS,2,=ROCSSNa+H,2,O,工业上生产的黄药含二硫化碳酸盐的量约为85左右,其他为杂质和水分。杂质一般为硫化物和硫代碳酸盐。,黄药的名称:黄药的制备:,73,(2) 黄药的性质,黄药要储存于干燥及阴凉的地方,防止水、酸、碱等物质的作用。工业上使用的黄药或多或少含有一些水分,因此黄药不能长时间保存以免失效。使用时必须注意它的颜色、不正常时停止使用。, 物理性质,(2) 黄药的性质黄药要储存于干燥及阴凉的地方,防止水、,74, 稳定性黄药是一种不稳定的化合物。,黄原酸分解的速度远远快于黄酸离子水解的速度,因此黄酸阴离子水解的速度决定了黄药分解成醇与CS,2,的速度。一旦黄酸离子产生水解黄药的
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!