获奖课件常用无损检测方法30201-15338精编版

上传人:无*** 文档编号:241769081 上传时间:2024-07-22 格式:PPT 页数:382 大小:4.05MB
返回 下载 相关 举报
获奖课件常用无损检测方法30201-15338精编版_第1页
第1页 / 共382页
获奖课件常用无损检测方法30201-15338精编版_第2页
第2页 / 共382页
获奖课件常用无损检测方法30201-15338精编版_第3页
第3页 / 共382页
点击查看更多>>
资源描述
第6章 常用无损检测方法 6.1 超声检测超声检测 6.2 射线检测射线检测 6.3 涡流检测涡流检测 6.4 声发射检测声发射检测 6.5 红外检测红外检测 6.6 激光全息检测激光全息检测 6.7 其他无损检测方法其他无损检测方法 思考与练习题思考与练习题 6.1 超超 声声 检检 测测 6.1.1 超声检测的基础知识超声检测的基础知识1.描述超声波的基本物理量描述超声波的基本物理量超声波的产生依赖于做高频机械振动的“声源”和传播机械振动的弹性介质,所以机械振动和波动是超声检测的物理基础。描述超声波波动特性的基本物理量有:声速c、频率f、波长、周期T、角频率。其中频率和周期是由波源决定的,声速与传声介质的特性和波型有关。这些量之间的关系如下:(6-1)2.2.超声波的特点超声波的特点超声波波长很短,这决定了超声波具有一些重要特性,使其能广泛应用于无损检测。1)方向性好 超声波具有像光波一样定向束射的特性。2)穿透能力强 对于大多数介质而言,它具有较强的穿透能力。例如在一些金属材料中,其穿透能力可达数米。3)能量高 超声检测的工作频率远高于声波的频率,超声波的能量远大于声波的能量。4)遇有界面时,将产生反射、折射和波型的转换。利用超声波在介质中传播时这些物理现象,经过巧妙的设计,使超声检测工作的灵活性、精确度得以大幅度提高。3.3.超声波的分类超声波的分类超声波的分类方法很多,如图6.1所示。主要有:按介质质点的振动方向与波的传播方向之间的关系分类,即按波型分类;按波振面的形状分类,即按波形分;按振动的持续时间分类等。其中,按波型是研究超声波在介质中传播规律的重要理论依据,将着重讨论。图6-1超声波的分类1)超声波的波型超声波的波型指的是介质质点的振动方向与波的传播方向的关系。按波型可分为纵波、横波、表面波和板波等。(1)纵波。介质中质点的振动方向与波的传播方向相同的波叫纵波,用L表示(见图6-2)。介质质点在交变拉压应力的作用下,质点之间产生相应的伸缩变形,从而形成了纵波。纵波传播时,介质的质点疏密相间,所以纵波有时又称为压缩波或疏密波。图6-2纵波(2)横波。介质中质点的振动方向垂直于波的传播方向的波叫横波,用S或T表示(见图6-3)。横波的形成是由于介质质点受到交变切应力作用时,产生了切变形变,所以横波又叫做切变波。液体和气体介质不能承受切应力,只有固体介质能够承受切应力,因而横波只能在固体介质中传播,不能在液体和气体介质中传播。(3)表面波(瑞利波)。当超声波在固体介质中传播时,对于有限介质而言,有一种沿介质表面传播的波即表面波(见图6-4)。瑞利首先对这种波给予了理论上的说明,因此表面波又称为瑞利波,常用R表示。图6-3横波图6-4表面波(4)板波(兰姆波)。在板厚和波长相当的弹性薄板中传播的超声波叫板波(或兰姆波)。板波传播时声场遍及整个板的厚度。薄板两表面质点的振动为纵波和横波的组合,质点振动的轨迹为一椭圆,在薄板的中间也有超声波传播(见图6-5)。板波按其传播方式又可分为对称型(S型)和非对称型(A型)两种,这是由质点相对于板的中间层作对称型还是非对称型运动来决定的。图6-5 板波(a)对称型;(b)非对称型2)超声波的波形超声波由声源向周围传播的过程可用波阵面进行描述。如图6-6所示,在无限大且各向同性的介质中,振动向各方向传播,用波线表示传播的方向;将同一时刻介质中振动相位相同的所有质点所连成的面称为波阵面;某一时刻振动传播到达的距声源最远的各点所连成的面称为波前。在各向同性介质中波线垂直于波阵面。在任何时刻,波前总是距声源最远的一个波阵面。波前只有一个,而波阵面可以有任意多个。图6-6 波线、波前与波阵面(a)平面波;(b)柱面波;(c)球面波根据波阵面的形状(波形),可将超声波分为平面波、柱面波和球面波等。平面波即波阵面为平面的波,而柱面波的波阵面为同轴圆柱面,球面波的波阵面为同心球面,如图6-6所示。当声源是一个点时,在各向同性介质中的波阵面为以声源为中心的球面。可以证明,球面波中质点的振动幅度与距声源的距离成反比。当声源的尺寸远小于测量点距声源的距离时,可以把超声波看成是球面波。球面波的波动方程为(6-2)3)连续波与脉冲波连续波是介质中各质点振动时间为无穷时的波。脉冲波是质点振动时间很短的波,超声检测中最常用的是脉冲波。对脉冲波进行频谱分析,可知它并非单一频率,而是包括多种频率成分。其中人们关心的频谱特征量主要有峰值频率、频带宽度和中心频率。6.1.2 6.1.2 超声场及介质的声参量简介超声场及介质的声参量简介1.1.超声场的物理量超声场的物理量1)声压当介质中有超声波传播时,由于介质质点振动,使介质中压强交替变化。超声场中某一点在某一瞬时所具有的压强P1与没有超声波存在时同一点的静态压强P0之差称为该点的声压,用P表示,即(6-3)对于平面余弦波,可以证明:(6-4)式中:为介质的密度;c为介质中的声速;为介质质点的振幅;V为介质质点振动的角频率;为质点振动速度的幅值;t为时间;x为质点距声源的距离;为声压幅值。由上式可知:超声场中某一点的声压幅值Pm与角频率成正比,也就与频率成正比。由于超声波的频率很高,远大于声波的频率,故超声波的声压一般也远大于声波的声压。2)声阻抗 介质中某一点的声压幅值Pm与该处质点振动速度幅值Vm之比,称为声阻抗,常用Z表示。在同一声压下,声阻抗Z愈大,质点的振动速度就愈小。声阻抗表示超声场中介质对质点振动的阻碍作用。由式(6-4)得(6-5)3)声强单位时间内垂直通过单位面积的声能,称为声强,用I表示。对于平面纵波,其声强I为(6-6)由式(6-6)可知,超声场中,声强与角频率平方成正比。由于超声波的频率很高,故超声波的声强很大,这是超声波能用于探伤的重要依据。4)分贝的概念实际探伤中,将声强I1与I2之比取对数的10倍得到二者相差的数量级,这时单位为分贝,用dB表示,即(6-7)根据式(6-6),有(6-8)式中:Pm1、Pm2分别为声强I1、I2对应的声压幅值。对于线性良好的超声波探伤仪,示波屏上波高与声压成正比,即任意两波高H1、H2之比等于相应的声压Pm1、Pm2之比,即(6-9)2.2.介质的声参量介质的声参量1)声速声速表示声波在介质中传播的速度,它与超声波的波型有关,但更依赖于传声介质自身的特性。因此,声速又是一个表征介质声学特性的参量。了解受检材料的声速,对于缺陷的定位和定量分析都有重要的意义。声速又可分为相速度和群速度。相速度是指声波传播到介质的某一选定相位点时在传播方向上的声速。群速度是指传播声波的包络上具有某种特征(如幅值最大)的点上沿传播方向上的声速。群速度是波群的能量传播速度。(1)纵波、横波和表面波的声速。纵波、横波和表面波的声速主要是由介质的弹性性质、密度和泊松比决定的,而与频率无关,即它们各自的相速度和群速度相同,因此一般说到它们的声速都是指相速度。不同材料声速值有较大的差异。在给定的材料中,频率越高,波长越短。同一固体介质中,纵波声速c1大于横波声速cs,横波声速cs又大于瑞利波声速cr。对于钢材,c11.8cs,cs1.1cr。(2)板波的声速。板波的声速与其他波型不同,其相速度随频率变化而变化。相速度随频率变化而变化的现象被称为频散。2)声衰减系数超声波的衰减指的是超声波在材料中传播时,声压或声能随距离的增大逐渐减小的现象。引起衰减的原因主要有三个方面:一是声束的扩散;二是由于材料中的晶粒或其他微小颗粒引起声波的散射;三是介质的吸收。在超声检测中,谈到超声波在材料中的衰减时,通常关心的是散射衰减和吸收衰减,而不包括扩散衰减。对于平面波来说,声压幅值衰减规律可用下式表示:(6-10)介质中超声波的衰减系数与超声波的频率关系密切,通常情况下,衰减系数随频率的增高而增大。将式(6-10)两边取对数可转换为以下关系式:(6-11)此时,的单位为dBmm(分贝毫米)。在超声检测中,直接可测量的量是两个声压比值的分贝数。因此衰减系数可通过超声波穿过一定厚度(x)材料后声压衰减的分贝(dB)数进行测量,将衰减量(dB)除以厚度即为衰减系数。6.1.3 超声波在介质中的传播特性超声波在介质中的传播特性1.超声波垂直入射到平界面上的反射和透射超声波垂直入射到平界面上的反射和透射如图6-7所示,当超声波垂直入射到两种介质的界面时,一部分能量透过界面进入第二种介质,成为透射波(声强为It),波的传播方向不变;另一部分能量则被界面反射回来,沿与入射波相反的方向传播,成为反射波(声强为Ir)。声波的这一性质是超声波检测缺陷的物理基础。图6-7超声波垂直入射于平界面的反射与透射通常将反射波声压Pr与入射波声压P0的比值称为声压反射率r,将透射波声压Pt和P0的比值称为声压透射率t。可以证明,r和t的数学表达式为:(6-12)(6-13)式中:Z1为第一种介质的声阻抗;Z2为第二种介质的声阻抗。为了研究反射波和透射波的能量关系,引入声强反射率R和声强透射率T两个量。R为反射波声强(Ir)和入射波声强(I0)之比;T为透射波声强(It)和入射波声强(I0)之比。(6-14)(6-15)对于脉冲反射技术来说,还有一个有意义的量是声压往返透过率,如图6-8所示。通常入射声压经过两种介质的界面透射到试件中后,均需经过相反的路径(假设在工件底面的反射为全反射)再次穿过界面到第一介质中才被探头所接收。两次穿透界面时透射率的大小,决定着接收信号的强弱。因此,将声压沿相反方向两次穿过界面时总的透射率称为声压往返透过率(tp),其数值等于两次穿透界面的透射率的乘积,由式(6-13)可得(6-16)图6-8声压往返透过率2.2.超声波垂直入射到多层界面上时的反射和透射超声波垂直入射到多层界面上时的反射和透射在超声检测中经常遇到超声波进入第二种介质后,穿过第二种介质再进入第三种介质的情况。如图6-9所示,当超声波从介质1(声阻抗为Z1)中垂直入射到介质1和介质2(声阻抗为Z2)的界面上时,一部分声能被反射,另一部分透射到介质2中;当透射的声波到达介质2和介质3(声阻抗为Z3)的界面时,再次发生反射与透射,其反射波部分在介质2中传播至介质2与介质1的界面,则又会发生同样的过程。如此不断地继续下去,则在两个界面的两侧,产生一系列的反射波与透射波。图6-9 在两个界面上的反射和透射3.3.超声波倾斜入射到平界面上的反射、超声波倾斜入射到平界面上的反射、折射和波型变换折射和波型变换当超声波相对于界面入射点法线以一定的角度倾斜入射到两种不同介质的界面上时,在界面上会产生反射、折射和波型转换现象,见图6-10。入射声波与入射点法线之间的夹角称为入射角。图6-10 超声波倾斜入射到平界面上的反射、折射和波型变换(a)纵波入射;(b)横波入射1)反射如图6-10(a)所示,当纵波以入射角L倾斜入射到异质界面上时,将会在介质1中于入射点法线的另一侧产生与法线成一定夹角L的反射纵波。反射波与入射点法线之间的夹角称为反射角。入射纵波与反射纵波之间的关系符合几何光学的反射定律,即L=L。与光的反射不同的是,当介质1为固体时,界面上既产生反射纵波,同时又发生波型转换并产生反射横波,即反射后同时产生纵波与横波两种波型。这时,横波反射角S与纵波入射角之间的关系与光学中的斯奈尔定律相同,为(6-17)若入射声波为横波,也会产生同样的现象,见图6-10(b),这时横波入射角S与横波反射角S相等。介质1为固体时纵波反射角与横波入射角之间的关系为(6-18)由于固体中纵波声速总是大于横波声速,因此,无论是纵波入射还是横波入射,均有。当介质1为液体或气体时,则入射波和反射波只能为纵波。2)折射当两种介质声速不同时,透射部分的声波会发生传播方向的改变,称为折射。不论是纵波入射还是横波入射,只要介质2为固体,则介质2中除有与入射波相同波型的折射波外,均可因在界面发生波型转换而产生与入射波不同波型的折射波。这时,介质2中可能同时存在纵波与横波(见图6-10)。折射角与入射角之间的关系符合斯奈尔定律。折射角相对于入射角的大小和折射波声速与入射波声速的比率有关。同时,由于纵波声速总是大于横波声速,因此纵波折射角L要大于横波折射角S。3)临界角当第二种介质中的折射波型的声速比第一种介质中入射波型的声速大时,折射角大于入射角。此时,存在一个临界入射角,在这个角度下,折射角等于90。大于这一角度时,第二种介质中不再有相应波型的折射波。(1)第一临界角。当入射波为纵波,且cL2cL1时,使纵波折射角达到90的纵波入射角称为第一临界角,用符号表示。当纵波入射角大于第一临界角时,第二介质中不再有折射纵波。(2)第二临界角。当入射波为纵波,第二介质为固体,且cS2cL1时,使横波折射角达到90的纵波入射角为第二临界角,用符号表示。通常在超声检测中,临界角主要应用于第二介质为固体,而第一介质为固体或液体的情况。这种情况下,可利用入射角在第一临界角和第二临界角之间的范围,在固体中产生一定角度范围内的纯横波,对试件进行检测。(3)第三临界角。第三临界角是在固体介质与另一种介质的界面上,用横波作为入射波时产生的。使纵波反射角达到90时的横波入射角称为第三临界角,用表示。4)斜入射时的声压反射率和透射率斜入射时反射波和透射波的声压关系较为复杂。但在超声检测中,关心的是斜入射的反射率和透射率随入射角度的变化。对脉冲反射法,更关心的是声压往返透过率随入射角度的变化。3.超声波入射到曲界面上的反射和透射超声波入射到曲界面上的反射和透射1)平面波入射到曲界面上的反射平面波入射到曲界面上时的情况如图6-11所示。平面波束与曲面上各入射点的法线成不同的夹角:入射角为0的声线沿原方向返回,称为声轴;其余声线的反射角则随着距声轴距离的增大而增大。当曲面是球面时,反射线或其延长线汇聚于一个焦点上;反射面为圆柱面时,反射线或其延长线汇聚于一条焦线上。此时,焦距F与曲面曲率半径r的关系为(6-19)图6.11平面波入射至曲面时的反射2)平面波在曲面上的折射 平面波入射到曲面上时,其折射波也将发生聚焦或发散,如图6-12所示。这时折射波的聚焦或发散不仅与曲面的凹凸有关,而且与界面两侧介质的声速有关。对于凹面,c1c2时发散;对于凸面,c1c2时聚焦,c1时,/4可以忽略,从而得到近场长度的简化计算公式如下,可用于实际工作中近场长度的估算:(6-23)再看图6-13中远场区部分的特点,图中标有“P球”的虚线为球面波声压随距离的变化曲线,可以看出,距离大于3N 以后,圆盘声源声轴上的声压幅值变化与球面波的曲线非常接近。这一结论也可通过式(6-21)导出。当4x/D23,也就是x3N时,式(6-21)可简化为(6-24)式中:S=D2/4为圆盘声源的面积。声压幅值与距声源的距离成反比,正是球面波的声压幅值的变化规律。2)指向性与扩散角 指向性与扩散角研究的是声束在空间扩散的规律。同样根据叠加原理,可将在空间中距声源有一定距离的任一点的声压,看做是声源上各点的辐射声压的叠加(见图6-14),从而得到声场内声压幅值的分布情况,如图6-15所示。图6-14圆盘声源远场中任一点的声压推导图6-15圆盘声源声场指向性示意图超声场中超声波的能量主要集中于以声轴为中心的某一角度范围内,这一范围称为主声束。这种声束集中向一个方向辐射的性质叫做声场的指向性。在主声束角度范围以外还存在一些能量很低的、只分布于声源附近的副瓣声束。主声束所包含的角度范围可由距声源充分远处的声压分布得到。设Rs为圆形声源的半径,r为空间任一点M到声源中心的距离,为M点与声源中心的连线与声源轴线的夹角。当满足条件r3R2s/,也就是r3N时,声压幅值的表达式为(6-25)式中:J1为第一类第一阶贝塞尔函数;S为声源面积。根据上式可知,距声源充分远处的任一横截面上,以声源轴线上的声压为最高。这是超声检测中对缺陷定位的依据。同时,存在偏离轴线的若干个角度上的声压的幅值为零。将远场中第一个声压为零的角度,称为指向角或半扩散角,以0表示为(6-26)指向角是代表主声束范围的角度,反映了声束的定向集中程度,也反映了声束随距离扩散的快慢。指向角越大,则声束指向性越差,声束扩散越快。由式(6-26)可看出,声源的直径越大,波长越短,则声束指向角越小,指向性越好。图6-16圆盘声源非扩散区示意图当IdIh,于是,在被检测试件的另一面就形成一幅射线强度不均匀的分布图。通过一定方式将这种不均匀的射线强度进行照相或转变为电信号指示、记录或显示,就可以评定被检测试件的内部质量,达到无损检测的目的。图6-35X射线检测原理2.2.射线检测方法射线检测方法射线检测常用的方法是照相法,即利用射线感光材料(通常用射线胶片),放在被透照试件的背面接受透过试件后的射线,如图6-36所示。胶片曝光后经暗室处理,就会显示出物体的结构图像。根据胶片上影像的形状及其黑度的不均匀程度,就可以评定被检测试件中有无缺陷及缺陷的性质、形状、大小和位置。此法的优点是灵敏度高、直观可靠、重复性好,是射线检测法中应用最广泛的一种常规方法。由于生产和科研的需要,还可用放大照相法和闪光照相法以弥补其不足。放大照相可以检测出材料中的微小缺陷。图6-36X射线照相原理示意图6.2.3 射线照相检测技术射线照相检测技术1.照相法的灵敏度和透度计照相法的灵敏度和透度计1)灵敏度灵敏度是指发现缺陷的能力,也是检测质量的标志。通常用两种方式表示:一是绝对灵敏度,是指在射线胶片上能发现被检测试件中与射线平行方向的最小缺陷尺寸;二是相对灵敏度,是指在射线胶片上能发现被检测试件中与射线平行方向的最小缺陷尺寸占试件厚度的百分数。若以d表示为被检测试件的材料厚度,x为缺陷尺寸,则其相对灵敏度为(6-38)2)透度计 透度计又称像质指示器。在透视照相中,要评定缺陷的实际尺寸是困难的,因此,要用透度计来做参考比较。同时,还可以用透度计来鉴定照片的质量和作为改进透照工艺的依据。透度计要用与被透照工件材质吸收系数相同或相近的材料制成。常用的透度计主要有两种。(1)槽式透度计。槽式透度计的基本设计是在平板上加工出一系列的矩形槽,其规格尺寸如图6-37所示。对不同厚度的工件照相,可分别采用不同型号的透度计。图6-37槽式透度计示意图(2)金属丝透度计。金属丝透度计是以一套(711根)不同直径(0.14.0 mm)的金属丝均匀排列,粘合于两层塑料或薄橡皮中间而构成的。为区别透度计型号,在金属丝两端摆上与号数对应的铅字或铅点。金属丝一般分为两类,透照钢材时用钢丝透度计,透照铝合金或镁合金时用铝丝透度计。图6-38为金属丝透度计的结构示意图(图中JB表示“机械工业部标准”)。使用金属丝透度计时,应将其置于被透照工件的表面,并应使金属丝直径小的一侧远离射线束中心。这样可保证整个被透照区的灵敏度达到如下计算数值:(6-39)式中:为观察到的最小金属丝直径;d为被透照工件部位的总厚度。图6-38金属丝透度计示意图2.2.增感屏及增感方式的选择增感屏及增感方式的选择由于X射线和射线波长短、硬度(见下文)大,对胶片的感光效应差,一般透过胶片的射线,大约1就能使胶片中的银盐微粒感光。为了增加胶片的感光速度,利用某些增感物质在射线作用下能激发出荧光或产生次级射线,从而加强对胶片的感光作用。在射线透视照相中,所用的增感物质称为增感屏,其增感系数为(6-40)1)荧光增感屏荧光增感屏是利用荧光物质被射线激发产生荧光实现增感作用的,其结构如图6-39所示。它是将荧光物质均匀地涂布在质地均匀而光滑的支撑物(硬纸或塑料薄板等)上,再覆盖一层薄薄的透明保护层组合而成的。图6-39荧光增感屏构造示意图2)金属增感屏金属增感屏在受射线照射时产生射线和二次标识X射线对胶片起感光作用。其增感较小,一般只有27倍。金属屏的增感特性通常是,原子序数增加,增感系数上升,辐射波长愈短,增感作用越显著。但是原子序数越大,激发能量也要相应提高,如果射线能量不能使金属屏的原子电离或激发,则不起增感作用,相反还会吸收一部分软射线。如铅增感屏,当管电压低于80 kV时,则基本上无增感作用。在生产实践中,多采用铅、锡等原子序数较高的材料作金属增感屏,因为铅的压延性好,吸收散射线的能力强。3)金属荧光增感屏金属荧光增感屏是在铅箔上涂一层荧光物质组合而成的,其结构如图6-40所示。它具有荧光增感的高增感系数,又有吸收散射线的作用。图6-40金属荧光增感屏结构示意图4)增感方式的选择 增感方式的选择通常考虑三方面的因素:产品设计对检测的要求、射线能量和胶片类型。3.曝光参数的选择曝光参数的选择 1)射线的硬度射线硬度是指射线的穿透力,由射线的波长决定。波长越短硬度越大,则穿透力就越强,对某一物质即具有较小的吸收系数。X射线波长的长短由管电压所决定,管电压愈高,波长愈短。射线硬度对透照胶片影像的质量有很大关系。因此,选择射线的硬度尤为重要。例如:当一束强度为I0的射线,通过被透照厚度为d的物体后,其强度将衰减为Id(由公式(6-36)描述);通过一厚度为x的缺陷后,其强度为Ix(由公式(6-37)描述)。IxId称为对比度或主因衬度,即(6-41)假设缺陷内为空气,则可忽略不计。因而(6-42)在工业射线透照中,总是希望胶片上的影像衬度尽可能高,以保证检测质量。因此,射线硬度尽可能选软些。但是,如果希望在材料的厚薄相邻部分一次曝光,则要选用较硬的射线。为了提高某些低原子序数、低密度和薄壁材料的检测灵敏度,应采用软射线,即低能X射线照相法。通常将60150 kV定为中等硬度X射线,60 kV以下定为软X射线。2)射线的曝光量 射线的曝光量通常以射线强度I和时间t的乘积表示,即 E=It,E的单位为mCih(毫居里小时)。对X射线来说,当管压一定时,其强度与管电流成正比。因此X射线的曝光量通常用管电流i和时间t的乘积来表示,即E=it(6-43)其单位为mAmin(毫安分)或mAs(毫安秒)。在一定范围内,如果E为常数,则i与t存在反比关系:E=i1t1=i2t2(6-44)一般在选用管电流和曝光时间时,在射线设备允许范围内,管电流总是取得大些,以缩短曝光时间并减少散射线的影响。此外,X射线从窗口呈直线锥体辐射,在空间各点的分布强度与该点到焦点的距离平方成反比(见图6.41)。即(6-45)图6-41曝光距离与射线强度的关系3)射线照相对比度射线照片上影像的质量由对比度、不清晰度、颗粒度决定。影像的对比度是指射线照片上两个相邻区域的黑度差。如果两个区域的黑度分别为D1、D2,则它们的对比度为:D=D1-D2。影像的对比度决定了在射线透照方向上可识别的细节,影像的不清晰度决定了在垂直于射线透照方向上可识别的细节尺寸,影像的颗粒度决定了影像可记录的细节最小尺寸。图6-42透照影像几何不清晰度4)焦距的选择焦距是指从放射源(焦点)至胶片的距离。焦距选择与射线源的几何尺寸和试件厚度有关。由于射线源有一定的几何尺寸,从而产生几何不清晰度Ug,如图6-42所示。由相似三角形关系,可以求出:(6-46)式中:为射线源的几何尺寸;F为焦点至胶片的距离;a为焦点至缺陷的距离;b为缺陷至胶片的距离。5)曝光曲线不同管电压下,材料厚度与曝光量的关系曲线,材料厚度d与曝光量x的关系为:(6-47)式中:为吸收系数;为常数。x与d呈线性关系。若以x为纵轴,d为横轴,当焦距一定时,则给定一个厚度d,对应于某一管电压可以求得一个x值。用各种不同的电压试验时,就可以得出一组斜率逐渐变化的曲线,如图6.43所示。图6-43材料厚度与曝光量的关系曲线 不同焦距下,材料厚度与管电压的关系曲线。根据式(6-47),由于底片黑度要求一定,所以x为一常数,如果被透照的材料固定,则d增大时必须减小。根据式(6-35)和式(6-29)知,所以管电压要相应增大。(6-48)若以材料厚度d为横轴,管电压U为纵轴,则在一定焦距下的厚度所对应的管电压可以连成一条曲线。以不同的焦距试验时,就可得到一组曲线,如图6-44所示。图6-44材料厚度与管电压的关系曲线6)等效系数两块不同厚度的不同材料在入射强度为I0的射线源照射下,若得到相同的出射强度Ix,则称二者为“等效”。它们的厚度之比称为材料的“等效系数”。根据等效系数的定义,可以从一条常用材料的曝光曲线上查出另一种材料的等效厚度所对应的管电压。6.2.4 常见缺陷及其影像特征常见缺陷及其影像特征 1.1.焊件中常见的缺陷焊件中常见的缺陷1 1)裂纹裂纹 裂纹主要是在熔焊冷却时因热应力和相变应力而产生的,也有在校正和疲劳过程中产生的,是危险性最大的一种缺陷。裂纹影像较难辨认。因为断裂宽度、裂纹取向、断裂深度不同,使其影像有的较清晰,有的模糊不清。常见的有纵向裂纹、横向裂纹和弧坑裂纹,分布在焊缝上或热影响区。图6-45 焊缝裂纹照片2 2)未焊透未焊透未焊透是熔焊金属与基体材料没有熔合为一体且有一定间隙的一种缺陷。在胶片上的影像特征是连续或断续的黑线,黑线的位置与两基体材料相对接的位置间隙一致。图6-46是对接焊缝的未焊透照片。图6-46对接焊缝未焊透照片3)气孔 气孔是在熔焊时部分空气停留在金属内部而形成的缺陷。气孔在底片上的影像一般呈圆形或椭圆形,也有不规则形状的,以单个、多个密集或链状的形式分布在焊缝上。在底片上的影像轮廓清晰,边缘圆滑,如气孔较大,还可看到其黑度中心部分较边缘要深一些(见图6-47)。图6-47焊缝气孔照片4)夹渣 夹渣是在熔焊时所产生的金属氧化物或非金属夹杂物,因来不及浮出表面,停留在焊缝内部而形成的缺陷。在底片上其影像是不规则的,呈圆形、块状或链状等,边缘没有气孔圆滑清晰,有时带棱角,如图6-48所示。图6-48焊缝夹渣照片5)烧穿 在焊缝的局部,因热量过大而被熔穿,形成流垂或凹坑。在底片上的影像呈光亮的圆形(流垂)或呈边缘较清晰的黑块(凹坑),如图6-49所示。图6-49焊缝烧穿照片2.2.铸件中常见的缺陷铸件中常见的缺陷1)夹杂 夹杂是金属熔化过程中的熔渣或氧化物,因来不及浮出表面而停留在铸件内形成的。在胶片上的影像有球状、块状或其他不规则形状。其黑度有均匀的和不均匀的,有时出现的可能不是黑块而是亮块,这是因为铸件中夹有比铸造金属密度更大的夹杂物,如铸镁合金中的熔剂夹渣,如图6-50所示。图6-50铸镁合金中的夹杂照片2)气孔 因铸型通气性不良等原因,使铸件内部分气体排不出来而形成气孔。气孔大部分接近表面,在底片上的影像呈圆形或椭圆形,也有不规则形状的,一般中心部分较边缘稍黑,轮廓较清晰,如图6-51所示。图6-51铸件中的气孔照片3)针孔 针孔是指直径小于或等于1 mm的气孔,是铸铝合金中常见的缺陷。在胶片上的影像有圆形、条形、苍蝇脚形等。当透照较大厚度的工件时,由于针孔分布在整个横断面,针孔投影在胶片上是重叠的,此时就无法辨认出它的单个形状了。4)疏松 浇铸时局部温差过大,在金属收缩过程中,邻近金属补缩不良,产生疏松。疏松多产生在铸件的冒口根部、厚大部位、厚薄交界处和具有大面积的薄壁处。在底片上的影像呈轻微疏散的浅黑条状或疏散的云雾状,严重的呈密集云雾状或树枝状,如图6-52所示。图6-52铸件内部疏松照片5)裂纹 裂纹一般是在收缩时产生,沿晶界发展。在底片上的影像是连续或断续曲折状黑线,一般两端较细,如图6-53所示。图6-53铸件裂纹照片6)冷隔 冷隔由浇铸温度偏低造成,一般分布在较大平面的薄壁上或厚壁过渡区,铸件清理后有时肉眼可见。在底片上的影像呈黑线,与裂纹相似,但有时可能中部细而两端较粗。4.4.缺陷埋藏深度的测定缺陷埋藏深度的测定根据缺陷在底片上的影像,只能判定缺陷在工件中的平面位置,也就是说,只能把缺陷位置以两个坐标表示出来。为了确定第三个坐标,即决定缺陷所在位置的深度,必须进行两次不同方向的照射。5.5.缺陷在射线方向上的厚度测定缺陷在射线方向上的厚度测定缺陷在射线束方向的厚度(如气孔直径或未焊透深度等)测定方法,可用测量缺陷在底片上的影像黑度来估计。6.6.表面缺陷和伪缺陷表面缺陷和伪缺陷1)表面缺陷 对于缺陷,主要应检查工件内部缺陷,但是各种表面缺陷在胶片上的影像和内部缺陷的影像并没有什么区别,表面缺陷有些是允许的。因此,在胶片上发现有缺陷影像后,应与工件表面仔细查对,最后得出结论。2)伪缺陷 伪缺陷产生的原因很多,形状也多种多样,检测人员一般凭经验能识别大部分伪缺陷。也就是说,对缺陷影像可根据缺陷影像的特征和产生的部位予以分析。此外,还可以从胶片两侧利用反光或放大镜观察表面是否划伤来判断。如仍怀疑有缺陷,则必须重照复验。6.2.5 6.2.5 射线检测及中子射线检测简介射线检测及中子射线检测简介1.1.射线检测的特点射线检测的特点 射线与X射线检测的工艺方法基本上是一样的,但是射线检测有其独特的地方。(1)射线源不像X射线那样,可以根据不同检测厚度来调节能量(如管电压),它有自己固定的能量,所以要根据材料厚度、精度要求合理选取射线源。(2)射线比X射线辐射剂量(辐射率)低,所以曝光时间比较长,曝光条件同样是根据曝光曲线选择的,并且一般都要使用增感屏。(3)射线源随时都在放射,不像X射线机那样不工作就没有射线产生,所以应特别注意射线的防护工作。(4)射线比普通X射线穿透力强,但灵敏度较X射线低,它可以用于高空、水下及野外作业。在那些无水无电及其他设备不能接近的部位(如狭小的孔洞或是高压线的接头等),均可使用射线对其进行有效的检测。2.2.中子射线照相检测的特点中子射线照相检测的特点中子射线照相检测与X射线照相检测、射线照相检测相类似,都是利用射线对物体有很强的穿透能力,来实现对物体的无损检测。对大多数金属材料来说,由于中子射线比X射线和射线具有更强的穿透力,对含氢材料表现为很强的散射性能等特点,从而成为射线照相检测技术中又一个新的组成部分。6.2.6 6.2.6 射线的防护射线的防护1.1.屏蔽防护法屏蔽防护法 屏蔽防护法是利用各种屏蔽物体吸收射线,以减少射线对人体的伤害,这是射线防护的主要方法。一般根据X射线、射线与屏蔽物的相互作用来选择防护材料,屏蔽X射线和射线以密度大的物质为好,如贫化铀、铅、铁、重混凝土、铅玻璃等都可以用作防护材料。但从经济、方便出发,也可采用普通材料,如混凝土、岩石、砖、土、水等。对于中子的屏蔽除能防护射线之外,还以特别选取含氢元素多的物质为宜。2.距离防护法距离防护法距离防护在进行野外或流动性射线检测时是非常经济有效的方法。这是因为射线的剂量率与距离的平方成反比,增加距离可显著地降低射线的剂量率。若离放射源的距离为R1处的剂量率为P1,在另一径向距离为R2处的剂量率为P2,则它们的关系为:(6-49)显然,增大R2可有效地降低剂量率P2,在无防护或护防层不够时,这是一种特别有用的防护方法。3.时间防护法时间防护法时间防护是指让工作人员尽可能的减少接触射线的时间,以保证检测人员在任一天都不超过国家规定的最大允许剂量当量(17mrem)。人体接受的总剂量:D=Pt,其中,P为在人体上接受到的射线剂量率,t为接触射线的时间。由此可见,缩短与射线接触时间t亦可达到防护目的。如每周每人控制在最大容许剂量0.1rem以内时,则应有D0.1rem;如果人体在每透照一次时所接受到的射线剂量为时,则控制每周内的透照次数N0.1,亦可以达到防护的目的。4.中子防护中子防护1)减速剂的选择快中子减速作用,主要依靠中子和原子核的弹性碰撞,因此较好的中子减速剂是原子序数低的元素如氢、水、石蜡等含氢多的物质,它们作为减速剂使用减速效果好,价格便宜,是比较理想的防护材料。2)吸收剂的选择对于吸收剂要求它在俘获慢中子时放出来的射线能量要小,而且对中子是易吸收的。锂和硼较为适合,因为它们对热中子吸收截面大,分别为:71barn(靶)和759barn,锂俘获中子时放出射线很少,可以忽略,而硼俘获的中子95放出0.7MeV的软射线,比较易吸收,因此常选含硼物或硼砂、硼酸作吸收剂。在设置中子防护层时,总是把减速剂和吸收剂同时考虑;如含2的硼砂(质量分数,下同)、石蜡、砖或装有2硼酸水溶液的玻璃(或有机玻璃)水箱堆置即可,特别要注意防止中子产生泄漏。6.3涡流检测涡流检测6.3.1 6.3.1 涡流检测的基本原理涡流检测的基本原理当导体处在变化的磁场中或相对于磁场运动时,由电磁感应定律可知,其内部会感应出电流。这些电流的特点是:在导体内部自成闭合回路,呈漩涡状流动,因此称之为涡流。例如,在含有圆柱导体芯的螺管线圈中通有交变电流时,圆柱导体芯中将出现涡流,如图6-54所示。图6-54涡流1 1涡流检测基本原理涡流检测基本原理当载有交变电流的检测线圈靠近导电试件时,由于激励线圈磁场的作用,试件中会产生涡流。涡流的大小、相位及流动形式受到试件导电性能的影响。涡流也会产生一个磁场,这个磁场反过来又会使检测线圈的阻抗发生变化。因此,通过测定检测线圈阻抗的变化,就可以判断出被测试件的性能及有无缺陷等。2 2 涡流的趋肤效应和透入深度涡流的趋肤效应和透入深度 当直流电流通过导线时,横截面上的电流密度是均匀的。但交变电流通过导线时,导线周围变化的磁场也会在导线中产生感应电流,从而会使沿导线截面的电流分布不均匀,表面的电流密度较大,越往中心处越小,尤其是当频率较高时,电流几乎是在导线表面附近的薄层中流动,这种现象称为趋肤效应。趋肤效应的存在使感生涡流的密度从被检材料或工件的表面到其内部按指数分布规律递减。在涡流检测中,定义涡流密度衰减到其表面密度值的1e(36.8%)时对应的深度为标准透入深度,也称趋肤深度,用符号表示,其数学表达式为(6-50)图6-55几种不同材料的标准透入深度与频率的关系图6-56透入半无限大导体的涡流密度与透入深度的关系6.3.2 涡流检测的阻抗分析法涡流检测的阻抗分析法 图6-57线圈耦合电路1 1 检测线圈的阻抗和阻抗归一化检测线圈的阻抗和阻抗归一化1)检测线圈的阻抗设通以交变电流的检测线圈(初级线圈)的自身阻抗为Z0,其中忽略了容抗,则(6-51)当初级线圈与次级线圈(被检对象)相互耦合时,由于互感的作用,闭合的次级线圈中会产生感应电流,而这个电流反过来又会影响初级线圈中的电压和电流。这种影响可以用次级线圈电路阻抗通过互感M反映到初级线圈电路的折合阻抗来体现,设折合阻抗为。(6-52)将次级线圈的折合阻抗与初级线圈自身的阻抗的和称为初级线圈的视在阻抗Zs,即(6-53)式中:为视在电阻;为视在电抗。应用视在阻抗的概念,就可认为初级线圈电路中电流和电压的变化是由于它的视在阻抗的变化引起的,而据此就可以得知次级线圈对初级线圈的效应,从而可以推知次级线圈电路中阻抗的变化。2)阻抗归一化图6-58所示的阻抗平面图虽然比较直观,但半圆形曲线在阻抗平面图上的位置与初级线圈自身的阻抗以及两个线圈自身的电感和互感有关。另外,半圆的半径不仅受到上述因素的影响,还随频率的不同而变化。这样,如果要对每个阻抗值不同的初级线圈的视在阻抗,或对频率不同的初级线圈的视在阻抗,或对两线圈间耦合系数不同的初级线圈的视在阻抗作出阻抗平面图时,就会得到半径不同、位置不一的许多半圆曲线,这不仅给作图带来不便,而且也不便于对不同情况下的曲线进行比较。为了消除初级线圈阻抗以及激励频率对曲线位置的影响,便于对不同情况下的曲线进行比较,通常要对阻抗进行归一化处理。图6-58初级线圈的阻抗平面图图6-59归一化后的阻抗平面图2 有效磁导率和特征频率有效磁导率和特征频率1)有效磁导率在半径为r、磁导率为、电导率为的长直圆柱导体上,紧贴密绕一螺线管线圈。在螺线管中通以交变电流,则圆柱导体中会产生一交变磁场,由于趋肤效应,磁场在圆柱导体的横截面上的分布是不均匀的。于是人们提出了一个假想模型:圆柱导体的整个截面上有一个恒定不变的均匀磁场,而磁导率却在截面上沿径向变化,它所产生的磁通等于圆柱导体内真实的物理场所产生的磁通。这样,就用一个恒定的磁场和变化着的磁导率替代了实际上变化着的磁场和恒定的磁导率,这个变化着的磁导率便称为有效磁导率,用eff表示,同时推导出它的表达式为(6-54)其中,。2)特征频率定义使(6-54)式中贝塞尔函数变量的模为1的频率为涡流检测的特征频率。其表达式为(6-55)对于非铁磁性材料,(H/cm),可得特征频率,d为圆柱导体的直径。图6-60eff与f/fg的关系曲线3)涡流检测相似律有效磁导率eff是一个完全取决于频率比f/fg大小的参数,而eff的大小又决定了试件内涡流和磁场强度的分布。因此,试件内涡流和磁场的分布是随f/fg的变化而变化的。理论分析和推导可以证明,试件中涡流和磁场强度的分布仅仅是f/fg的函数。由此,可得出涡流检测的相似律:对于两个不同的试件,只要各对应的频率比f/fg相同,则有效磁导率、涡流密度及磁场强度的几何分布均相同。3 影响线圈阻抗的因素影响线圈阻抗的因素1)穿过式线圈的阻抗分析内含导电圆柱体的长直载流螺线管线圈为穿过式线圈。有效磁导率的概念也是以这种线圈为基础提出的,而且假定圆柱体的直径d和线圈的直径D相同。但事实上,检测线圈和工件之间总要留有空隙以保证工件快速通过。因此有线圈填充系数=(d/D)2,90;(b)903)液体的毛细现象 把一根内径很细的玻璃管插入液体内,根据液体对管子的润湿能力的不同,管内的液面高度就会发生不同的变化。如果液体能够润湿管子,则液面在管内上升,且形成凹形,如图6-99(a)所示;如果液体对管子没有润湿能力,那么管内的液面下降,且成为凸形弯曲,如图6-99(b)所示。这种弯曲的液面,称为弯月面。液体的润湿能力越强,管内液面上升越高。以上这种细管内液面高度的变化现象,称为液体的毛细现象。毛细现象的动力为:固体管壁分子吸引液体分子,引起液体密度增加,产生侧向斥压强推动附面层上升,形成弯月面,由弯月面表面张力收缩提拉液柱上升。平衡时,管壁侧向斥压力通过表面张力传递,与液柱重力平衡。图6-99毛细现象毛细现象使液体在管内上升的高度h可用下式计算:(6-66)式中:为液面与管壁接触角;为液体的密度;为表面张力系数;R为细管半径;g为重力加速度。4)溶液的吸光性能 有色物质溶解到溶液中时,溶液的颜色与浓度有关。浓度越高,颜色越深,即溶液对光的吸收能力越强。表示这一能力大小的物理量是吸光度。溶液的吸光度与溶液中的有色物质浓度及液层厚度的乘积成正比。5)溶解作用 溶剂对溶质的溶解能力通常用溶解度来衡量。所谓溶解度,是指在一定温度下,100 g溶液里所能溶解溶质的量。溶剂的溶解作用,基本遵循物质的“相似相溶”规律。6)乳化作用 在某物质的作用下,把原来不相溶的物质变为可溶性的,这种作用称为乳化作用。所用这种物质叫乳化剂。例如,把水和油一起倒进容器中,静置后就会出现分层现象,形成明显的界面。如果加以搅拌,使油分散在水中,形成乳浊液,但稍静置,又会分成明显的两层。如果在容器中加入合适的乳化剂,经搅拌混合后,可形成稳定的乳浊液。这一类乳化剂是由具有亲水基和亲油基(又叫憎水基)的两亲分子构成的,它能吸附在水和油的界面上,起一种搭桥的作用,不仅防止了水和油的互相排斥,而且把两者紧紧地连接在自己的两端,使油和水不相分离。这样就把渗透液变成可溶性的了,经这样处理后的渗透液在检测清洗时,很容易被水洗掉,保证了检测工作的顺利进行。2.2.液体渗透检测原理液体渗透检测原理 液体渗透检测法的基本原理是依据物理学中液体对固体的润湿能力和毛细现象为基础的(包括渗透和上升现象)。首先将被探工件浸涂具有高度渗透能力的渗透液,由于液体的润湿作用和毛细现象,渗透液便渗入工件表面缺陷中。然后将工件缺陷以外的多余渗透液清洗干净,再涂一层吸附力很强的白色显像剂,将渗入裂缝中的渗透液吸出来,在白色涂层上便显示出缺陷的形状和位置的鲜明图案,从而达到了无损检测的目的。3.3.液体渗透检测方法液体渗透检测方法液体渗透检测方法很多,可按不同的标准对其进行分类。按缺陷的显示方法不同,可分为着色法和荧光法;按渗透液的清洗方法不同,可分为自乳化型、后乳化型和溶剂清洗型;按缺陷的性质不同,可分为检查表面缺陷的表面检测法和检查穿透型缺陷的检漏法;按施加检测剂的方式不同,可分为浸泡法、刷涂法、喷涂法、流涂法和静电喷涂法等。这里主要介绍其中的着色渗透检测法。该方法一般分为七个基本步骤:前处理、渗透、清洗、干燥、显像、观察及后处理。(1)前处理。为得到良好的检测效果,首要条件是使渗透液充分浸入缺陷内。预先消除可能阻碍渗透、影响缺陷显示的各种原因的操作称为前处理。它是影响缺陷检出灵敏度的重要基本操作。轻度的污物及油脂附着等可用溶剂洗净液清除。如果涂料、氧化皮等全部覆盖了检测部位的表面,则渗透液将不能渗入缺陷。材料或工件表面洗净后必须进行干燥,除去缺陷内残存的洗净液和水等,否则将阻碍渗透或者使渗透液劣化。(2)渗透。渗透就是使渗透液吸入缺陷内部的操作。为达到充分渗透,必须在渗透过程中一直使渗透液充分覆盖受检表面。实际工作中,应根据零件的数量、大小、形状以及渗透液的种类来选择具体的覆盖方法。一般情况下,渗透剂的使用温度为1540。根据零件的不同要求发现的缺陷种类不同、表面状态的不同和渗透剂的种类不同选择不同的渗透时间,一般渗透时间为520 min。渗透时间包括浸涂时间和滴落时间。对于有些零件在渗透的同时可以加载荷,使细小的裂缝张开,有利于渗透剂的渗入,以便检测到细微的裂纹。(3)清洗。在涂敷渗透剂并保持适当的时间之后,应从零件表面去除多余的渗透剂,但又不能将已渗入缺陷中的渗透剂清洗出来,以保证取得最高的检验灵敏度。水洗型渗透剂可用水直接去除,水洗的方法有搅拌水浸洗、喷枪水冲洗和多喷头集中喷洗几种,应注意控制水洗的温度、时间和压力大小。后乳化型渗透剂在乳化后,用水去除,要注意乳化的时间要适当,时间太长,细小缺陷内部的渗透剂易被乳化而清洗掉;时间太短,零件表面的渗透剂乳化不良,表面清洗不干净。溶剂去除型渗透剂使用溶剂擦除即可。(4)干燥。干燥的目的是去除零件表面的水分。溶剂型渗透剂的去除不必进行专门的干燥过程。用水洗的零件,若采用干粉显示或非水湿型显像工艺,在显像前必须进行干燥;若采用含水湿型显像剂,水洗后可直接显像,然后进行干燥处理。干燥的方法有:用干净的布擦干、用压缩空气吹干、用热风吹干、热空气循环烘干等。干燥的温度不能太高,以防止将缺陷中的渗透剂也同时烘干,致使在显像时渗透剂不能被吸附到零件表面上,并且应尽量缩短干燥时间。在干燥过程中,如果操作者手上有油污,或零件筐和吊具上有残存的渗透剂等,会对零件表面造成污染而产生虚假的缺陷显示。凡此种种情况实际操作过程中都应予以避免。(5)显像。显像就是用显像剂将零件表面缺陷内的渗透剂吸附至零件表面,形成清晰可见的缺陷图像。根据显像剂的不同,显像方式可分为干式、水型和非水型。零件表面涂敷的显像剂要施加均匀,且一次涂敷完毕,一个部位不允许反复涂敷。(6)观察。在着色检验时,显像后的零件可在自然光或白光下观察,不需要特别的观察装置。在荧光检验时,则应将显像后的零件放在暗室内,在紫外线的照射下进行观察。对于某些虚假显示,可用干净的布或棉球沾少许酒精擦拭显示部位;擦拭后显示部位仍能显示的为真实缺陷显示,不能再现的为虚假显示。检验时可根据缺陷中渗出渗透剂的多少来粗略估计缺陷的深度。(7)后处理。渗透检测后应及时将零件表面的残留渗透剂和显像剂清洗干净。对于多数显像剂和渗透液残留物,采用压缩空气吹拂或水洗的方法即可去除;对于那些需要重复进行渗透检测的零件、使用环境特殊的零件,应当用溶剂进行彻底清洗。3.3.液体渗透检测技术的特点及应用液体渗透检测技术的特点及应用液体渗透检测的优点是应用广泛、原理简明易懂、检查经济、设备简单、显示缺陷直观,并可以同时显示各个不同方向的各类缺陷。渗透检测对大型工件和不规则零件的检查以及现场机件的检修检查,更能显示其特殊的优点。但渗透检测对埋藏于表皮层以下的缺陷是无能为力的,它只能检查开口暴露于表面的缺陷,另外还有操作工序繁杂等缺点。随着化学工业的发展,渗透检测技术已日益完善,已被广泛应用于机械、航空、宇航、造船、仪表、压力容器和化工工业等各个领域。6.7.4 6.7.4 声振检测法声振检测法1 1 声振检测的原理及方法声振检测的原理及方法一个物体振动状态的不同,表现为发出的声音不同,在物理上这是由于它们振动的幅度、频率、持续时间以及单一振动或复合振动等的不同。这些物理量与振动物体的材料、结构等密切相关。作为一个振动系统,在单一频率情况下,机械振动的基本方程为(6-67)式中:F为机械振动的驱动力;u为质点的振动速度;Z为等效机械阻抗,表示为(6-68)式中:M为等效质量;C为等效柔顺性;R为等效摩擦阻尼;i为电流;为角频率。Z的数值与胶接状态密切相关。通过测量Z或F一定时测量u,就可以相对地测出胶接的质量。所谓声振检测法就是用电声换能器激发样品振动,而反映样品振动特性的等效阻抗,反作用于换能器,构成换能器的负载。当负载有变化时,换能器的某些特性也随之变化。从而确定被检工件的特性。换能器特性的测量方法有:振幅法、频率法和相位法等。1)频率检测法 当对构件施加一冲击力时,它将在其所有的振动形态下振荡,不同形态的相对强度视冲击性质和位置而定。因此,构件响应是系统所有形态自然频率和阻尼的函数。采用高速AD转换或数字瞬态捕捉设备,可以将系统响应的瞬态信号以数字形式储存于计算机的内存中。存储的数据可以在检测后进行处理,获得每一种模态的对数减幅率。也可以采用快速傅立叶变换方法,将幅值时间数据变换成幅值频率数据。利用上述技术,可将构件受冲击所产生的响应时间记录变换成相应的频谱。这样一来,在时间域中很难分辨的被检构件的固有频率,在频谱中则很容易从其最大值中加以辨认。图6-100振动相应的频谱2)局部激振法 局部激振法是对被测结构的一点或多点施加激励,使其发生振动,并对所有欲测的各点测量其结构的局部性能。它包括单点激振法和多点激振法。2 2 声振检测的应用声振检测的应用1)蜂窝结构检测 蜂窝结构具有较高的比强度,在导弹、火箭和卫星上得到了广泛的应用,如火箭和卫星的玻璃钢蜂窝整流罩、铝蜂窝仪、艚舱等。由于蜂窝结构件成型工艺复杂,脱粘缺陷是不可避免的。检测时,探头激发产生的声波进入被测试件,并使被测点基材振动,接收部分将根据接收信号相位和幅度的差别,即结构所承受谐振力后产生的机械阻抗变化来判断被测件的质量。粘接质量的变化使得阻抗柔顺系数产生很大的变化。通过和标准试样进行对比,结果是在某个频率点上,粘接良好区的相位和幅度与缺陷处有较大的差别,它取决于脱粘的尺寸和蒙皮的厚度。通过机械阻抗分析法,能够检测出单层或多层面板的蜂窝胶结结构中粘接层之间的脱粘缺陷。采用上述方法,可以检测出0.5 mm+H+0.5 mm的铝面板+铝蜂窝(H代表蜂窝夹心)结构中10 mm的脱粘缺陷和0.6 mm+H+0.7 mm的铝面板+玻璃钢蜂窝结构中5 mm的缺陷。这种方法在使用时无需液体耦合,不污染产品,可对曲面和微小点进行测试,有较小的接触点和使用灵活性,适用于形状不规则或弯曲的表面。通过在探头顶端加载弹簧或接触压力并配合CT扫描系统,可实现连续式机械扫描,特别适合于检测形状复杂的大型蜂窝结构件,可提高检测效率。2)复合材料检测 图6-101是采用脉冲激励方法,在激光脉冲传播至构件时取几微秒间隔的视图组成全息图,它是以强化高分子复合材料为面板的蜂窝壁板的检测结果,其中含有两个缺陷。声振法在国外航空制造工业中得到了广泛的应用,它可检测出复合材料层合板中一层或几层与基层的分离,这种形式的局部缺陷对构件整体动态特性的影响很小,但构件局部刚度的下降是很显著的。图6-101蜂窝壁板检测结果3)胶结强度检测 胶结强度检测的应用并不限于复合材料层复合板结构,它们能提供树脂结合构件的质量信息。例如,金属板板(单胶缝)可以检测出内聚粘接质量、腐蚀、粘合与脱粘等情况。思考与练习题思考与练习题 1.试述超声波的特点和超声检测的适用范围。2.简述超声波有哪些基本类型和分类方法。3.何谓超声场,表述超声场及介质的声参量有哪些?4.简述超声波垂直入射至平界面时,r、t、R、T及界面两侧必须满足的边界条件。5.何谓超声场的近场区、远场区和指向性?6.常用的超声检测方法有哪些?7.X射线检测的原理是什么?8.透度计的使用原
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!