电磁场和电磁波(第2讲)课件

上传人:沈*** 文档编号:241639068 上传时间:2024-07-12 格式:PPTX 页数:35 大小:1.01MB
返回 下载 相关 举报
电磁场和电磁波(第2讲)课件_第1页
第1页 / 共35页
电磁场和电磁波(第2讲)课件_第2页
第2页 / 共35页
电磁场和电磁波(第2讲)课件_第3页
第3页 / 共35页
点击查看更多>>
资源描述
1.4 矢量场的通量与散度矢量场的通量与散度 1、矢量线、矢量线 意义意义:形象直观地描述了矢量场的空间分形象直观地描述了矢量场的空间分 布状态。布状态。矢量线方程矢量线方程:概念概念:矢量线是这样的曲线,其上每一矢量线是这样的曲线,其上每一 点的切线方向代表了该点矢量场点的切线方向代表了该点矢量场 的方向。的方向。矢量线矢量线oM 2、矢量场的通量、矢量场的通量 问题问题:如何定量描述矢量场的大小?如何定量描述矢量场的大小?引入通量的概念。引入通量的概念。通量的概念通量的概念:其中:其中:面积元矢量;面积元矢量;面积元的法向单位矢量;面积元的法向单位矢量;穿过面积元穿过面积元 的通量;的通量;如果曲面如果曲面 S 是闭合的,则规定曲面法矢由闭合曲面内指向是闭合的,则规定曲面法矢由闭合曲面内指向外,矢量场对闭合曲面的通量是:外,矢量场对闭合曲面的通量是:面积元矢量面积元矢量通过闭合曲面有通过闭合曲面有净的矢量线穿出净的矢量线穿出有净的矢有净的矢量线进入量线进入进入与穿出闭合曲进入与穿出闭合曲面的矢量线相等面的矢量线相等矢量场通过闭合曲面通量的三种可能结果矢量场通过闭合曲面通量的三种可能结果 闭合曲面的通量从闭合曲面的通量从宏观上宏观上建立了矢量场通过闭合曲面的通建立了矢量场通过闭合曲面的通量与曲面内产生矢量场的源的关系。量与曲面内产生矢量场的源的关系。通量的物理意义通量的物理意义3、矢量场的散度、矢量场的散度 为了定量研究为了定量研究场与源场与源之间的关系,需建立场空间任意点(小之间的关系,需建立场空间任意点(小体积元)的通量源与矢量场(小体积元曲面的通量)的关系。利体积元)的通量源与矢量场(小体积元曲面的通量)的关系。利用极限方法得到这一关系:用极限方法得到这一关系:称为矢量场的称为矢量场的散度散度。散度是矢量通过包含该点的任意闭合小曲面的通量与曲面元散度是矢量通过包含该点的任意闭合小曲面的通量与曲面元体积之比的极限。体积之比的极限。柱面坐标系柱面坐标系球面坐标系球面坐标系直角坐标系直角坐标系散度的表达式散度的表达式:散度的有关公式散度的有关公式:直角坐标系下散度表达式的推导直角坐标系下散度表达式的推导 由此可知,穿出前、后两侧面的净由此可知,穿出前、后两侧面的净通量值为通量值为oxy在直角坐标系中计算在直角坐标系中计算FzzDxDyDP 不失一般性,令包围不失一般性,令包围P点的微体积点的微体积 V 为一直平行六面体,如为一直平行六面体,如图所示。则图所示。则根据定义,则得到直角坐标系中的散度根据定义,则得到直角坐标系中的散度 表达式为表达式为 同理,分析穿出另两组侧面的净通量,并合成之,即得由点同理,分析穿出另两组侧面的净通量,并合成之,即得由点P 穿出该六面体的净通量为穿出该六面体的净通量为4、散度定理、散度定理体积的剖分体积的剖分VS1S2en2en1S 从散度的定义出发,可以得到矢量场在空间任意闭合曲面的从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即 散度定理是闭合曲面积散度定理是闭合曲面积分与体积分之间的一个变换分与体积分之间的一个变换关系,在电磁理论中有着广关系,在电磁理论中有着广泛的应用。泛的应用。例例1.6 己知矢量场己知矢量场 中,有一中,有一个边长为单位长度的正六面体,它位于第一象限内,个边长为单位长度的正六面体,它位于第一象限内,其中一个顶点在坐标原点。试求从该正六面体穿出的其中一个顶点在坐标原点。试求从该正六面体穿出的净通量,并验证散度定理。净通量,并验证散度定理。例例1.6 己知矢量场己知矢量场 中,有一中,有一个边长为单位长度的正六面体,它位于第一象限内,个边长为单位长度的正六面体,它位于第一象限内,其中一个顶点在坐标原点。试求从该正六面体穿出的其中一个顶点在坐标原点。试求从该正六面体穿出的净通量,并验证散度定理。净通量,并验证散度定理。解:先计算六面体的净通量,解:先计算六面体的净通量,前表面:前表面:左侧面:左侧面:解:先计算六面体的净通量,解:先计算六面体的净通量,前表面:前表面:后表面:后表面:右侧面:右侧面:顶面:顶面:底面:底面:闭合面总通量:闭合面总通量:右侧面:右侧面:顶面:顶面:底面:底面:闭合面总通量:闭合面总通量:面积分和体积分结果相同,从而验证了散度定理。面积分和体积分结果相同,从而验证了散度定理。验证通量定理,由于验证通量定理,由于面积分和体积分结果相同,从而验证了散度定理。面积分和体积分结果相同,从而验证了散度定理。1.5 矢量场的环流和旋度矢量场的环流和旋度 1.矢量场的环流与旋涡源矢量场的环流与旋涡源 例如:流速场例如:流速场 不是所有的矢量场都由通量源激发。存在另一类不同于通量不是所有的矢量场都由通量源激发。存在另一类不同于通量源的矢量源,它所激发的矢量场的力线是闭合的,它对于任何闭源的矢量源,它所激发的矢量场的力线是闭合的,它对于任何闭合曲面的通量为零。但在场所定义的空间中沿闭合路径的积分不合曲面的通量为零。但在场所定义的空间中沿闭合路径的积分不为零。为零。如磁场沿任意闭合曲线的积分与通过闭合曲线所围曲面的电如磁场沿任意闭合曲线的积分与通过闭合曲线所围曲面的电流成正比,即:流成正比,即:上式建立了磁场的环流与电流的关系。上式建立了磁场的环流与电流的关系。q如果矢量场的任意闭合回路的环流恒为零,称该矢量场为如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无无旋场旋场,又称为,又称为保守场保守场。q如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场有旋矢量场,能够激发有旋矢量场的源称为,能够激发有旋矢量场的源称为旋涡源旋涡源。电流是。电流是磁场的旋涡源。磁场的旋涡源。环流的概念环流的概念 矢量场对于闭合曲线矢量场对于闭合曲线C 的环流定义为该矢量对闭合曲线的环流定义为该矢量对闭合曲线C 的线积分,即的线积分,即 过点过点M 作一微小曲面作一微小曲面 S,它的边界曲线记为,它的边界曲线记为C,曲面的法线,曲面的法线方向方向n与曲线的绕向成右手螺旋法则。当与曲线的绕向成右手螺旋法则。当 S0时,极限时,极限称为称为矢量场在矢量场在点点M 处沿方向处沿方向n的的环流面密度环流面密度。矢量场的环流给出了矢量场与积分回路所围曲面内旋涡源的矢量场的环流给出了矢量场与积分回路所围曲面内旋涡源的宏观联系。为了给出空间任意点矢量场与旋涡源的关系,引入矢宏观联系。为了给出空间任意点矢量场与旋涡源的关系,引入矢量场的旋度。量场的旋度。特点特点:其值:其值与与点点M 处的方向处的方向n有关。有关。2、矢量场的旋度、矢量场的旋度()(1)环流面密度)环流面密度概念概念:矢量场在矢量场在M点处的旋度为一矢量,其数值为点处的旋度为一矢量,其数值为M点的环流面点的环流面 密度最大值,其方向为取得环量密度最大值时面积元的法密度最大值,其方向为取得环量密度最大值时面积元的法 线方向,即线方向,即物理意义物理意义:旋涡源密度矢量。旋涡源密度矢量。性质性质:(2)矢量场的旋度)矢量场的旋度oyDz DyCMzx1234计算计算 的示意图的示意图 直角坐标系中旋度的表达式直角坐标系中旋度的表达式如图,作一包围点如图,作一包围点 的边长为的边长为 和和 且平行于且平行于yz平面平面的矩形回路。由定义取环流在的矩形回路。由定义取环流在x方向方向的分量的分量 旋度一般应为空间矢量,为旋度一般应为空间矢量,为讨论简单,我们先计算其沿讨论简单,我们先计算其沿x x方方向的分量。向的分量。式中式中代入代入得到得到同理可得同理可得故得故得于是有于是有旋度的计算公式旋度的计算公式:直角坐标系直角坐标系圆柱面坐标系圆柱面坐标系球面坐标系球面坐标系旋度的有关公式旋度的有关公式:矢量场的旋度矢量场的旋度的散度恒为零的散度恒为零标量场的梯度标量场的梯度的旋度恒为零的旋度恒为零3、Stokes定理定理 Stokes定理是闭合曲线积定理是闭合曲线积分与曲面积分之间的一个变换分与曲面积分之间的一个变换关系式,在电磁理论中有广泛关系式,在电磁理论中有广泛的应用。的应用。曲面的曲面的剖分剖分方向相反大小方向相反大小相等结果抵消相等结果抵消 从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即4、散度和旋度的区别、散度和旋度的区别 旋度有一个重要性质:旋度的散度恒为旋度有一个重要性质:旋度的散度恒为0。即。即 这在直角坐标下很容易证明这在直角坐标下很容易证明例例1.9 在矢量场在矢量场 中,有一个中,有一个三三角形围线角形围线C位于位于xy平面上,试计算环流平面上,试计算环流 ,并,并验证斯托克斯定理。验证斯托克斯定理。解:先计算闭合曲线上的积分解:先计算闭合曲线上的积分 在在 上,上,而而结果与前面相同,从而验证了斯托克斯公式。结果与前面相同,从而验证了斯托克斯公式。例例1.4.2 若某矢量场若某矢量场 场中有场中有一半球面一半球面S ,通过计算验证,通过计算验证斯托克斯公式。斯托克斯公式。解:在球坐标内,面元矢量为解:在球坐标内,面元矢量为 在直角坐标下的旋度为在直角坐标下的旋度为因此有因此有 另外,在另外,在xy平面内,闭合路径为平面内,闭合路径为 ,因此有环流,因此有环流例例1.7 求矢量场求矢量场 在点在点M(1,2,1)处的旋度以及沿矢径方向的环量强度。处的旋度以及沿矢径方向的环量强度。将将M点坐标代入,得点坐标代入,得解:解:p经常不断地学习,你就什么都知道。你知道得越多,你就越有力量pStudyConstantly,AndYouWillKnowEverything.TheMoreYouKnow,TheMorePowerfulYouWillBe写在最后谢谢你的到来学习并没有结束,希望大家继续努力Learning Is Not Over.I Hope You Will Continue To Work Hard演讲人:XXXXXX 时 间:XX年XX月XX日
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!