高考物理大二轮复习与增分策略 专题七 电磁感应与电路 第1讲 电磁感应问题-人教版高三全册物理试题

上传人:文*** 文档编号:241357505 上传时间:2024-06-20 格式:DOC 页数:21 大小:887KB
返回 下载 相关 举报
高考物理大二轮复习与增分策略 专题七 电磁感应与电路 第1讲 电磁感应问题-人教版高三全册物理试题_第1页
第1页 / 共21页
高考物理大二轮复习与增分策略 专题七 电磁感应与电路 第1讲 电磁感应问题-人教版高三全册物理试题_第2页
第2页 / 共21页
高考物理大二轮复习与增分策略 专题七 电磁感应与电路 第1讲 电磁感应问题-人教版高三全册物理试题_第3页
第3页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
专题七 电磁感应与电路专题定位高考对本部分内容的要求较高,常在选择题中考查电磁感应中的图象问题、变压器和交流电的描述问题,在计算题中作为压轴题,以导体棒运动为背景,综合应用电路的相关知识、牛顿运动定律和能量守恒定律解决导体棒类问题.本专题考查的重点有以下几个方面:楞次定律的理解和应用;感应电流的图象问题;电磁感应过程中的动态分析问题;综合应用电路知识和能量观点解决电磁感应问题;直流电路的分析;变压器原理及三个关系;交流电的产生及描述问题.应考策略对本专题的复习应注意“抓住两个定律,运用两种观点,分析三种电路”.两个定律是指楞次定律和法拉第电磁感应定律;两种观点是指动力学观点和能量观点;三种电路是指直流电路、交流电路和感应电路.第1讲电磁感应问题1.楞次定律中“阻碍”的表现(1)阻碍磁通量的变化(增反减同).(2)阻碍物体间的相对运动(来拒去留).(3)阻碍原电流的变化(自感现象).2.感应电动势的计算(1)法拉第电磁感应定律:En,常用于计算平均电动势.若B变,而S不变,则EnS;若S变,而B不变,则EnB.(2)导体棒垂直切割磁感线:EBlv,主要用于求电动势的瞬时值.(3)如图1所示,导体棒Oa围绕棒的一端O在垂直磁场的平面内做匀速圆周运动而切割磁感线,产生的电动势EBl2. 图13.感应电荷量的计算回路中发生磁通量变化时,在t时间内迁移的电荷量(感应电荷量)为qIttntn.可见,q仅由回路电阻R和磁通量的变化量决定,与发生磁通量变化的时间t无关.4.电磁感应电路中产生的焦耳热当电路中电流恒定时,可用焦耳定律计算;当电路中电流变化时,则用功能关系或能量守恒定律计算.解决感应电路综合问题的一般思路是“先电后力”,即:先作“源”的分析分析电路中由电磁感应所产生的电源,求出电源参数E和r;接着进行“路”的分析分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;然后是“力”的分析分析研究对象(通常是金属棒、导体、线圈等)的受力情况,尤其注意其所受的安培力;接着进行“运动状态”的分析根据力和运动的关系,判断出正确的运动模型;最后是“能量”的分析寻找电磁感应过程和研究对象的运动过程中,其能量转化和守恒的关系.例1(多选)(2016全国甲卷20)法拉第圆盘发电机的示意图如图1所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是() 图1A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍解析将圆盘看成无数幅条组成,它们都在切割磁感线从而产生感应电动势和感应电流,则当圆盘顺时针(俯视)转动时,根据右手定则可知圆盘上感应电流从边缘流向中心,流过电阻的电流方向从a到b,B对;由法拉第电磁感应定律得感应电动势EBLBL2,I,恒定时,I大小恒定,大小变化时,I大小变化,方向不变,故A对,C错;由PI2R知,当变为原来的2倍时,P变为原来的4倍,D错.答案AB预测1(多选)如图2所示,由一段外皮绝缘的导线扭成两个半径为R和r的闭合回路,Rr,导线单位长度的电阻为A,导线截面半径远小于R和r.圆形区域内存在垂直平面向里、磁感应强度大小随时间按Bkt(k0,为常数)的规律变化的磁场,下列说法正确的是() 图2A.小圆环中电流的方向为逆时针B.大圆环中电流的方向为逆时针C.回路中感应电流大小为D.回路中感应电流大小为答案BD解析根据穿过整个回路的磁通量增大,依据楞次定律,及Rr,则大圆环中电流的方向为逆时针,小圆环中电流的方向为顺时针,故A错误,B正确;根据法拉第电磁感应定律,则有:Ek(R2r2),由闭合电路欧姆定律,那么回路中感应电流大小为I,故C错误,D正确.预测2如图3所示,用一条横截面积为S的硬导线做成一个边长为L的正方形,把正方形的一半固定在均匀增大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度大小随时间的变化率k(k0),虚线ab与正方形的一条对角线重合,导线的电阻率为.则下列说法正确的是() 图3A.线框中产生顺时针方向的感应电流B.线框具有扩张的趋势C.若某时刻的磁感应强度为B,则线框受到的安培力为D.线框中ab两点间的电势差大小为答案C解析根据楞次定律,线框中产生的感应电流方向沿逆时针方向,故A错误;B增大,穿过线框的磁通量增大,根据楞次定律,感应电流的磁场为了阻碍磁通量的增加,线框有收缩的趋势,故B错误;由法拉第电磁感应定律得:ESL2kL2,因线框电阻R,那么感应电流大小为I,则线框受到的安培力为:FBIL,故C正确;由上分析,可知,ab两点间的电势差大小UEkL2,故D错误.解题方略对于电磁感应图象问题的分析要注意以下三个方面:1.注意初始时刻的特征,如初始时刻感应电流是否为零,感应电流的方向如何.2.注意看电磁感应发生的过程分为几个阶段,这几个阶段是否和图象变化相对应.3.注意观察图象的变化趋势,看图象斜率的大小、图象的曲直是否和物理过程对应.例2如图4所示,虚线右侧存在匀强磁场,磁场方向垂直纸面向外,正方形金属线框电阻为R,边长为L,自线框从左边界进入磁场时开始计时,在外力作用下由静止开始以垂直于磁场边界的恒定加速度a进入磁场区域,t1时刻线框全部进入磁场.规定顺时针方向为感应电流i的正方向,外力大小为F,线框中电功率的瞬时值为P,通过线框横截面的电荷量为q,其中Pt图象为抛物线,则上述物理量随时间变化的关系正确的是() 图4解析线框做匀加速运动,其速度vat,感应电动势EBLv,感应电流 i,i与t成正比,故A错误;线框进入磁场过程中受到的安培力F安BiL,由牛顿第二定律得:FF安ma,得 Fma,Ft图象是不过原点的倾斜直线,故B错误;线框的电功率 Pi2Rt2,故C正确;线框的位移xat2,电荷量qttt2,qt图象应是抛物线.故D错误.答案C预测3(多选)如图5所示,在0xL和2Lx3L的区域内存在着匀强磁场,磁场的方向垂直于xOy平面(纸面)向里,具有一定电阻的正方形线框abcd边长为2L,位于xOy平面内,线框的ab边与y轴重合.令线框从t0时刻由静止开始沿x轴正方向做匀加速直线运动,则线框中的感应电流i(取逆时针方向的电流为正)、bc两端电势差Ubc随时间t的函数图象大致是下图中的()图5答案AC解析设线框ab从xL运动到x4L的时间为t1,则由运动学公式得t1 t02t0t0t0,这段时间内穿过线框的磁通量不变,没有感应电流.故B错误.设线框ab从x4L运动到x5L的时间为t2,则由运动学公式得t2 t0t02t00.236t0的时间内,根据楞次定律得,感应电流方向沿顺时针方向,为负值.感应电流为I,故A正确.bc两端电势差UbcIR,bc为外电路,故电势差变化和电流变化相同,C正确,D错误.预测4(多选)如图6甲所示,在水平面上固定宽d1 m的金属“U”型导轨,右端接一定值电阻R0.5 ,其余电阻不计.在“U”型导轨右侧a0.5 m的范围存在垂直纸面向里的匀强磁场,磁感应强度随时间变化的规律如图乙所示.在t0时刻,质量m0.1 kg的导体棒以v01 m/s的初速度从距导轨右端b2 m开始向右运动,导体棒与导轨之间的动摩擦因数0.1,不计地球磁场的影响,g10 m/s2.用E、I、P、Q分别表示4 s内回路中的电动势大小、电流大小、电功率及电热,则下列图象正确的是()图6答案AB解析因为在进入磁场前回路中没有电流产生,并且02 s内磁感应强度不变化,回路的磁通量不变化,没有感应电动势产生,故不会从t0时刻就产生电热,D错误;在进入磁场前导体棒做匀减速直线运动,加速度为ag1 m/s2,导体棒速度减小到零所需的时间为t1 s,停止前发生的位移为x0.5 m,所以在进入磁场前导体棒就已经停止运动,所以回路中的感应电流是因为磁感应强度发生变化产生的,在t2 s时,磁感应强度发生变化,产生感应电动势,有了感应电流,根据法拉第电磁感应定律可得E0.1 V,感应电流I0.2 A,过程中的电功率为PEI0.02 W(但是是从t2 s才开始有的),故A、B正确,C错误.解题方略解答电磁感应中电路问题的三个步骤1.确定电源:利用En或EBlvsin 求感应电动势的大小,利用右手定则或楞次定律判断感应电流的方向.如果在一个电路中切割磁感线的部分有多个并相互联系,可等效成电源的串、并联.2.分析电路结构:分析内、外电路,以及外电路的串、并联关系,画出等效电路图.3.利用电路规律求解:应用闭合电路欧姆定律及串、并联电路的基本性质等列方程求解.例3均匀导线制成的单匝正方形闭合线框abcd,边长为L,总电阻为R,总质量为m.将其置于磁感应强度为B的水平匀强磁场上方h处,如图7所示.线框由静止开始自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行.重力加速度为g.当cd边刚进入磁场时,图7(1)求线框中产生的感应电动势大小;(2)求cd两点间的电势差大小;(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件.解析(1)cd边刚进入磁场时,线框速度为v线框中产生的感应电动势:EBLvBL(2)此时线框中电流:Icd切割磁感线相当于电源,cd两点间的电势差即路端电压:UI(R)BL(3)安培力:FBIL根据牛顿第二定律:mgFma由a0,解得下落高度满足:h答案(1)BL(2)BL(3)h预测5(多选)直角三角形金属框abc放置在竖直向上的匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.若金属框绕ab边向纸面外以角速度匀速转动90(从上往下看逆时针转动),如图8甲所示,c、a两点的电势差为Uca,通过ab边的电荷量为q.若金属框绕bc边向纸面内以角速度匀速转动90,如图乙所示,c、a两点的电势差为Uca,通过ab边的电荷量为q.已知bc、ab边的长度都为l,金属框的总电阻为R.下列判断正确有是()图8A.UcaBl2 B.UcaBl2C.q D.q答案AD解析甲图中,在转动过程中穿过金属框的磁通量始终为0,总电动势为0,电流为0,电量也为0,C错.ac的有效切割长度为l,有效切割速度v,由右手定则,知ca,所以UcaBl2,A对.乙图中,金属框中产生的电动势的最大值是Bl2,ca相当于电源,有内阻,路端电压的最大值小于Bl2,故B错.通过的电量q,D对,应选A、D.预测6如图9所示,平行极板与单匝圆线圈相连,极板距离为d,圆半径为r,单匝线圈的电阻为R1,外接电阻为R2,其他部分的电阻忽略不计.在圆中有垂直纸面向里的磁场,磁感应强度均匀增加,有一个带电粒子静止在极板之间,带电粒子质量为m、电量为q.则下列说法正确的是() 图9A.粒子带正电B.磁感应强度的变化率为C.保持开关闭合,向上移动下极板时,粒子将向下运动D.断开开关S,粒子将向下运动答案B解析穿过线圈的磁通量垂直纸面向里增加,由楞次定律可知,平行板电容器的上极板电势高,下极板电势低,板间存在向下的电场,粒子受到竖直向下的重力而静止,因此粒子受到的电场力方向向上,电场力方向与场强方向相反,粒子带负电,故A错误;对粒子,由平衡条件得:mgq,而感应电动势:E,解得:E,由法拉第电磁感应定律得:EnnS,解得:,故B正确;保持开关闭合,则极板间的电压不变,当向上移动下极板时,导致间距减小,那么电场强度增大,则电场力增大,因此粒子将向上运动,故C错误;断开开关S,电容器既不充电,也不放电,则电场强度不变,因此电场力也不变,故粒子静止不动,故D错误.例4如图10所示,两根等高光滑的四分之一圆弧形轨道与一足够长水平轨道相连,圆弧的半径为R0、轨道间距为L11 m,轨道电阻不计.水平轨道处在竖直向上的匀强磁场中,磁感应强度为B11 T,圆弧轨道处于从圆心轴线上均匀向外辐射状的磁场中,如图所示.在轨道上有两长度稍大于L1、质量均为m2 kg、阻值均为R0.5 的金属棒a、b,金属棒b通过跨过定滑轮的绝缘细线与一质量为M1 kg、边长为L20.2 m、电阻r0.05 的正方形金属线框相连.金属棒a从轨道最高处开始,在外力作用下以速度v05 m/s沿轨道做匀速圆周运动到最低点MN处,在这一过程中金属棒b恰好保持静止.当金属棒a到达最低点MN处被卡住,此后金属线框开始下落,刚好能匀速进入下方h1 m处的水平匀强磁场B3中,B3 T.已知磁场高度HL2.忽略一切摩擦阻力,重力加速度为g10 m/s2.求:图10(1)辐射磁场在圆弧处磁感应强度B2的大小;(2)从金属线框开始下落到进入磁场前,金属棒a上产生的焦耳热Q;(3)若在线框完全进入磁场时剪断细线,线框在完全离开磁场B3时刚好又达到匀速,已知线框离开磁场过程中产生的焦耳热为Q110.875 J,则磁场的高度H为多少.解析(1)对金属棒b,由受力平衡MgB1IL1由a、b金属棒和导轨组成的闭合回路,有I联立方程,代入数值求得B22 T(2)根据能量守恒定律有MghMv2mv22Q线框进入磁场的瞬间,由受力平衡,得MgB1I1L1B3I2L2其中,I1I2联立方程,代入数值求得Q2 J(3)从线框完全进入磁场到完全出磁场,有MgHMvMv2Q1在完全出磁场的瞬间,由受力平衡,得MgB3I3L2其中,I3联立方程,代入数值求得H1.2 m答案(1)2 T(2)2 J(3)1.2 m预测7(多选)如图11所示,相距为d的两条水平虚线L1、L2之间是方向水平向里的匀强磁场,磁感应强度为B,正方形线圈abcd边长为L(Ld),质量为m,电阻为R,将线圈在磁场上方高h处静止释放,cd边始终水平,cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0.则线圈穿越磁场的过程中(从cd边刚进入磁场起一直到ab边离开磁场为止),以下说法正确的是() 图11A.感应电流所做的功为mgdB.感应电流所做的功为2mgdC.线圈的最小速度一定为D.线圈的最小速度一定为答案BD解析线圈在下落过程中分别经过图中的四个位置:1位置cd边刚进入磁场,2位置ab边进入磁场,3位置cd边刚出磁场,4位置ab边刚出磁场,根据题意1、3位置速度为v0;2到3位置磁通量不变,无感应电流,线圈只受重力,做加速度为g的匀加速运动;结合1、3位置速度相同,可知1到2减速,2到3匀加速,3到4减速,并且1到2减速与3到4减速所受合力相同,运动情况完全相同.对线圈由1到3位置用动能定理:mgdWEk0,W为克服安培力所做的功,根据能量守恒定律,这部分能量转化为电能(电流所做的功),所以线圈由1到3位置电流做功为mgd;线圈由1到3位置过程中只有线圈由1到2位置有电流,所以线圈由1到2位置有电流做功为mgd,线圈由3到4位置与线圈由1到2位置完全相同,所以线圈由3到4位置有电流做功也为mgd.综上所述,从cd边刚进入磁场起一直到ab边离开磁场为止,即1到4位置电流做功为2mgd.A错误,B正确.线圈速度最小时并未受力平衡,不满足mg,所以C错误.由以上分析可知2和4位置速度最小,初始位置到1位置自由落体v0,2到3位置做加速度为g的匀加速运动vv2g(dL),结合两式解得vmin,D正确.预测8(2016浙江理综24)小明设计的电磁健身器的简化装置如图12所示,两根平行金属导轨相距l0.50 m,倾角53,导轨上端串接一个R0.05 的电阻.在导轨间长d0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B2.0 T.质量m4.0 kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距s0.24 m.一位健身者用恒力F80 N拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g10 m/s2,sin 530.8,不计其他电阻、摩擦力以及拉杆和绳索的质量).求:图12(1)CD棒进入磁场时速度v的大小;(2)CD棒进入磁场时所受的安培力FA的大小;(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.答案(1)2.4 m/s(2)48 N(3)64 J26.88 J解析(1)由牛顿第二定律得a12 m/s2进入磁场时的速度v2.4 m/s(2)感应电动势EBlv感应电流I安培力FAIBl代入得FA48 N(3)健身者做功WF(sd)64 J又Fmgsin FA0CD棒在磁场区做匀速运动在磁场中运动时间t焦耳热QI2Rt26.88 J.专题强化练1.如图1所示,铜线圈水平固定在铁架台上,铜线圈的两端连接在电流传感器上,传感器与数据采集器相连,采集的数据可通过计算机处理,从而得到铜线圈中的电流随时间变化的图线.利用该装置探究条形磁铁从距铜线圈上端某一高度处由静止释放后,沿铜线圈轴线竖直向下穿过铜线圈的过程中产生的电磁感应现象.两次实验中分别得到了如图甲、乙所示的电流时间图线.条形磁铁在竖直下落过程中始终保持直立姿态,且所受空气阻力可忽略不计.则下列说法中正确的是()图1A.若两次实验条形磁铁距铜线圈上端的高度不同,其他实验条件均相同,则甲图对应实验条形磁铁距铜线圈上端的高度大于乙图对应实验条形磁铁距铜线圈上端的高度B.若两次实验条形磁铁的磁性强弱不同,其他实验条件均相同,则甲图对应实验条形磁铁的磁性比乙图对应实验条形磁铁的磁性强C.甲图对应实验条形磁铁穿过铜线圈的过程中损失的机械能小于乙图对应实验条形磁铁穿过铜线圈的过程中损失的机械能D.两次实验条形磁铁穿过铜线圈的过程中所受的磁场力都是先向上后向下答案C解析由乙图中的电流峰值大于甲中电流峰值,可知乙实验的电磁感应现象更明显,故乙实验中的高度更高或磁铁磁性更强,A、B错误;电流峰值越大,产生的焦耳热越多,损失的机械能越大,故C正确;整个过程中,磁铁所受的磁场力都是阻碍磁铁运动,故磁场力一直向上,D错误.2.(多选)(2016全国丙卷21)如图2,M为半圆形导线框,圆心为OM;N是圆心角为直角的扇形导线框,圆心为ON;两导线框在同一竖直面(纸面)内;两圆弧半径相等;过直线OMON的水平面上方有一匀强磁场,磁场方向垂直于纸面.现使线框M、N在t0时从图示位置开始,分别绕垂直于纸面且过OM和ON的轴,以相同的周期T逆时针匀速转动,则()图2A.两导线框中均会产生正弦交流电B.两导线框中感应电流的周期都等于TC.在t时,两导线框中产生的感应电动势相等D.两导线框的电阻相等时,两导线框中感应电流的有效值也相等答案BC解析当导线框进入磁场过程中,根据EBR2可得,感应电动势恒定,感应电流恒定,不是正弦式交流电,A错误,C正确;当导线框进入磁场时,根据楞次定律可得,两导线框中的感应电流方向为逆时针,当导线框穿出磁场时,根据楞次定律可得,导线框中产生的感应电流为顺时针,所以感应电流的周期和导线框运动周期相等,B正确;导线框N在完全进入磁场后有时间穿过导线框的磁通量不变化,没有感应电动势产生,即导线框N在0和TT内有感应电动势,其余时间内没有;而导线框M在整个过程中都有感应电动势,即便两导线框电阻相等,两者的电流有效值不会相同,D错误.3.(多选)高频焊接技术的原理如图3(a)所示.线圈接入图(b)所示的正弦式交流电(以电流顺时针方向为正),圈内待焊接工件形成闭合回路.则()图3A.图(b)中电流有效值为IB.0t1时间内工件中的感应电流变大C.0t1时间内工件中的感应电流方向为逆时针D.图(b)中T越大,工件温度上升越快答案AC解析由图知电流的最大值为I,因为该电流是正弦式交流电,则有效值为I,故A正确.it图象切线的斜率等于电流的变化率,根据数学知识可知:0t1时间内线圈中电流的变化率减小,磁通量的变化率变小,由法拉第电磁感应定律可知工件中感应电动势变小,则感应电流变小,故B错误.根据楞次定律可知:0t1时间内工件中的感应电流方向为逆时针,故C正确.图(b)中T越大,电流变化越慢,工件中磁通量变化越慢,由法拉第电磁感应定律可知工件中产生的感应电动势越小,温度上升越慢,故D错误.4.(2016潮州市二模)图4在竖直平面内固定一根水平长直导线,导线中通以如图4所示方向的恒定电流.在其正上方(略靠后)由静止释放一个闭合圆形导线框.已知导线框在下落过程中始终保持框平面沿竖直方向.在框由实线位置下落到虚线位置的过程中()A.导线框中感应电流方向依次为:顺时针逆时针顺时针B.导线框的磁通量为零时,感应电流也为零C.导线框所受安培力的合力方向依次为:向上向下向上D.导线框产生的焦耳热等于下落过程中框损失的重力势能答案A解析根据安培定则,通电直导线的磁场在上方向外,下方向里;离导线近的地方磁感应强度大,离导线远的地方磁感应强度小.线框从上向下靠近导线的过程,向外的磁感应强度增加,根据楞次定律,线框中产生顺时针方向的电流;穿越导线时,上方向外的磁场和下方向里的磁场叠加,先是向外的磁通量减小,之后变成向里的磁通量,并逐渐增大,直至最大;根据楞次定律,线框中产生逆时针方向的电流.向里的磁通量变成最大后,继续向下运动,向里的磁通量又逐渐减小,这时的电流新方向又变成了顺时针.故A正确;根据A中的分析,穿越导线时,上方向外的磁场和下方向里的磁场叠加,先是向外的磁通量减小,一直减小到0,之后变成向里的磁通量,并逐渐增大.这一过程是连续的,始终有感应电流存在,不是0,故B错误;根据楞次定律,感应电流始终阻碍导线框相对磁场的运动,故受安培力的方向始终向上,故C错误;根据能量守恒定律,导线框产生的焦耳热等于下落过程中框损失的重力势能与增加动能之差,故D错误.5.如图5所示,用均匀导线做成边长为0.2 m的正方形线框,线框的一半处于垂直线框向里的有界匀强磁场中.当磁场以20 T/s的变化率增强时,a、b两点间电势差的大小为U,则()图5A.ab,U0.2 VC.ab,U0.4 V答案A解析题中正方形线框的左半部分磁通量变化而产生感应电动势,从而在线框中有感应电流产生,把左半部分线框看成电源,其电动势为E,内电阻为,画出等效电路如图所示.则a、b两点间的电势差即为电源的路端电压,设l是边长,且依题意知:20 T/s.由法拉第电磁感应定律,得:EN120 V0.4 V所以有:UIR0.2 V,由于a点电势低于b点电势,故有:Uab0.2 V.6.如图6甲所示,R0为定值电阻,两金属圆环固定在同一绝缘平面内.左端连接在一周期为T0的正弦交流电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化.规定内圆环a端电势高于b端时,a、b间的电压uab为正,下列uabt图象可能正确的是()图6答案C解析在第一个0.25T0时间内,通过大圆环的电流为顺时针增加的,由楞次定律可判断内环a端电势高于b端,因电流的变化率逐渐减小,故内环的电动势逐渐减小,同理可知,在0.25T00.5T0时间内,通过大圆环的电流为顺时针逐渐减小,则由楞次定律可知,内环a端电势低于b端,因电流的变化率逐渐变大,故内环的电动势变大,故只有C正确.7.如图7所示,MN、PQ为足够长的平行导轨,间距L0.5 m.导轨平面与水平面间的夹角37.NQMN,NQ间连接有一个R3 的电阻.有一匀强磁场垂直于导轨平面,磁感应强度为B01 T.将一根质量为m0.05 kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,金属棒的电阻r2 ,其余部分电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行.已知金属棒与导轨间的动摩擦因数0.5,当金属棒滑行至cd处时速度大小开始保持不变,cd 距离NQ为s2 m.试解答以下问题:(g10 m/s2,sin 370.6,cos 370.8)图7(1)金属棒达到稳定时的速度是多大?(2)从静止开始直到达到稳定速度的过程中,电阻R上产生的热量是多少?(3)若将金属棒滑行至cd处的时刻记作t0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t1 s时磁感应强度应为多大?答案(1)2 m/s(2)0.06 J(3)0.4 T解析(1)在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有:mgsin B0IL mgcos EB0LvEI(Rr)代入已知数据,得v2 m/s(2)根据能量守恒得,重力势能减小转化为动能、摩擦产生的内能和回路中产生的焦耳热.有:mgssin mv2mgcos sQ电阻R上产生的热量:QRQ解得:QR0.06 J(3)当回路中的总磁通量不变时,金属棒中不产生感应电流.此时金属棒将沿导轨做匀加速运动,故: mgsin mgcos ma设t时刻磁感应强度为B,则:B0LsBL(sx)xvtat2故t1 s时磁感应强度B0.4 T8如图8甲所示,宽为L、倾角为的平行金属导轨,下端垂直于导轨连接一阻值为R的定值电阻,导轨之间加垂直于轨道平面的磁场,其随时间变化规律如图乙所示.t0时刻磁感应强度为B0,此时,在导轨上距电阻x1处放一质量为m、电阻为2R的金属杆,t1时刻前金属杆处于静止状态,当磁场即将减小到B1时,金属杆也即将开始下滑(金属杆所受的最大静摩擦力等于滑动摩擦力).图8(1)求0t1时间内通过定值电阻的电荷量;(2)求金属杆与导轨间的最大静摩擦力;(3)若金属杆沿导轨下滑x2后开始做匀速运动,求金属杆下滑x2过程中,电阻R产生的焦耳热.答案(1)(2)mgsin (3)解析(1)感应电动势:E感应电流:I通过定值电阻的电荷量qItIt1即q(2)在t1时刻,对杆有mgsin FfmF安0其中F安B1IL联立可得:Ffmmgsin (3)当金属杆达到最大速度时mgsin FfmF安0即此时感应电流与0t1时间内感应电流大小相等,感应电动势也相等.所以B1Lv从开始滑动到达到最大速度过程mgx2sin Q焦Q滑mv2其中Q滑Ffmx2电阻R上产生的焦耳热QRQ焦解得QR
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 临时分类 > 等级考试


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!