《计算机网络技术》PPT课件

上传人:san****019 文档编号:23739124 上传时间:2021-06-10 格式:PPT 页数:105 大小:1.74MB
返回 下载 相关 举报
《计算机网络技术》PPT课件_第1页
第1页 / 共105页
《计算机网络技术》PPT课件_第2页
第2页 / 共105页
《计算机网络技术》PPT课件_第3页
第3页 / 共105页
点击查看更多>>
资源描述
计 算 机 网 络 技 术 http:/ 第 3 章 数据链路层3.1 使用点对点信道的数据链路层3.1.1 数据链路和帧3.1.2 三个基本问题3.2 点对点协议 PPP3.2.1 PPP 协议的特点3.2.2 PPP 协议的帧格式3.2.3 PPP 协议的工作状态 第 3 章 数据链路层(续)3.3 使用广播信道的数据链路层 3.3.1 局域网的数据链路层 3.3.2 CSMA/CD 协议3.4 使用广播信道的以太网 3.4.1 使用集线器的星形拓扑 3.4.2 以太网的信道利用率 3.4.3 以太网的 MAC 层 第 3 章 数据链路层(续)3.5 扩展的以太网3.5.1 在物理层扩展以太网3.5.2 在数据链路层扩展以太网3.6 高速以太网 3.6.1 100BASE-T 以太网 3.6.2 吉比特以太网 3.6.3 10 吉比特以太网 3.6.4 使用高速以太网进行宽带接入3.7 其他类型的高速局域网接口 数据链路层数据链路层使用的信道主要有以下两种类型:点对点信道。这种信道使用一对一的点对点通信方式。广播信道。这种信道使用一对多的广播通信方式,因此过程比较复杂。广播信道上连接的主机很多,因此必须使用专用的共享信道协议来协调这些主机的数据发 数据链路层的简单模型局 域 网 广 域 网主 机 H1 主 机 H2路 由 器 R1 路 由 器 R2 路 由 器 R3电 话 网 局 域 网主 机 H1 向 H2 发 送 数 据链 路 层应 用 层运 输 层网 络 层 物 理 层 链 路 层应 用 层运 输 层网 络 层物 理 层链 路 层网 络 层物 理 层 链 路 层网 络 层物 理 层 链 路 层网 络 层物 理 层R1 R2 R3H1 H2从 层 次 上 来 看 数 据 的 流 动 数据链路层的简单模型( 续)局 域 网 广 域 网主 机 H1 主 机 H2路 由 器 R1 路 由 器 R2 路 由 器 R3电 话 网 局 域 网主 机 H1 向 H2 发 送 数 据 链 路 层应 用 层运 输 层网 络 层物 理 层 链 路 层应 用 层运 输 层网 络 层物 理 层链 路 层网 络 层物 理 层 链 路 层网 络 层物 理 层 链 路 层网 络 层物 理 层R1 R2 R3H1 H2仅 从 数 据 链 路 层 观 察 帧 的 流 动 3.1 使用点对点信道的数据链路层3.1.1 数据链路和帧 链路(link)是一条无源的点到点的物理线路段,中间没有任何其他的交换结点。 一 条 链 路 只 是 一 条 通 路 的 一 个 组 成 部 分 。数据链路(data link) 除了物理线路外,还必须有通信协议来控制这些数据的传输。若把实现这些协议的硬件和软件加到链路上,就构成了数据链路。 现 在 最 常 用 的 方 法 是 使 用 适 配 器 ( 即 网 卡 ) 来 实 现这 些 协 议 的 硬 件 和 软 件 。 一 般 的 适 配 器 都 包 括 了 数 据 链 路 层 和 物 理 层 这 两 层的 功 能 。 IP 数 据 报1010 0110帧 取 出数 据链 路 层网 络 层 链 路结 点 A 结 点 B物 理 层数 据链 路 层 结 点 A 结 点 B帧 (a) (b)发 送 帧接 收链 路 IP 数 据 报1010 0110帧 装 入数 据 链 路 层 传 送 的 是 帧 数据链路层像个数字管道 常常在两个对等的数据链路层之间画出一个数字管道,而在这条数字管道上传输的数据单位是帧。早期的数据通信协议曾叫作通信规程(procedure)。因此在数据链路层,规程和协议是同义语。 结 点 结 点帧 帧 3.1.2 三个基本问题 (1) 封装成帧(2) 透明传输(3) 差错控制 1. 封装成帧封装成帧(framing)就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。确定帧的界限。首部和尾部的一个重要作用就是进行帧定界。 帧 结 束帧 首 部 IP 数 据 报帧 的 数 据 部 分 帧 尾 部 MTU数 据 链 路 层 的 帧 长开 始发 送 帧 开 始 用控制字符进行帧定界的方法举例 SOH 装 在 帧 中 的 数 据 部 分帧帧 开 始 符 帧 结 束 符发 送 在 前 EOT 2. 透明传输SOH EOT出 现 了 “ EOT” 被 接 收 端 当 作 无 效 帧 而 丢 弃被 接 收 端误 认 为 是 一 个 帧 数 据 部 分 EOT完 整 的 帧发 送在 前 解决透明传输问题发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面插入一个转义字符“ESC”(其十六进制编码是 1B)。字节填充(byte stuffing)或字符填充(character stuffing)接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。如果转义字符也出现数据当中,那么应在转义字符前面插入一个转义字符。当接收端收到连续的两个转义字符时,就删除其中前面的一个。 SOH SOH EOT SOHESCESCEOT ESCSOH ESCESC ESCSOH原 始 数 据 EOTEOT经 过 字 节 填 充 后 发 送 的 数 据 字 节 填 充字 节 填 充字 节 填 充字 节 填 充发 送在 前 帧 开 始 符 帧 结 束 符用字节填充法解决透明传输的问题 SOH 3. 差错检测在传输过程中可能会产生比特差错:1 可能会变成 0 而 0 也可能变成 1。在一段时间内,传输错误的比特占所传输比特总数的比率称为误码率 BER (Bit Error Rate)。误码率与信噪比有很大的关系。为了保证数据传输的可靠性,在计算机网络传输数据时,必须采用各种差错检测措施。 循环冗余检验的原理 在数据链路层传送的帧中,广泛使用了循环冗余检验 CRC 的检错技术。在发送端,先把数据划分为组。假定每组 k 个比特。 假设待传送的一组数据 M = 101001(现在 k = 6)。我们在 M 的后面再添加供差错检测用的 n 位冗余码一起发送。 冗余码的计算 用二进制的模 2 运算进行 2n 乘 M 的运算,这相当于在 M 后面添加 n 个 0。得到的 (k + n) 位的数除以事先选定好的长度为 (n + 1) 位的除数 P,得出商是 Q 而余数是 R,余数 R 比除数 P 少1 位,即 R 是 n 位。 冗余码的计算举例 现在 k = 6, M = 101001。设 n = 3, 除数 P = 1101,被除数是 2nM = 101001000。 模 2 运算的结果是:商 Q = 110101, 余数 R = 001。把余数 R 作为冗余码添加在数据 M 的后面发送出去。发送的数据是:2nM + R 即:101001001,共 (k + n) 位。 110101 Q (商 ) P (除 数 ) 1101 101001000 2nM (被 除 数 ) 1101 1110 1101 0111 0000 1110 1101 0110 0000 1100 1101 001 R (余 数 ), 作 为 FCS 循环冗余检验的原理说明 帧检验序列 FCS 在数据后面添加上的冗余码称为帧检验序列 FCS (Frame Check Sequence)。循环冗余检验 CRC 和帧检验序列 FCS并不等同。CRC 是 一 种 常 用 的 检 错 方 法 , 而 FCS 是 添加 在 数 据 后 面 的 冗 余 码 。FCS 可 以 用 CRC 这 种 方 法 得 出 , 但 CRC 并 非 用 来 获 得 FCS 的 唯 一 方 法 。 接收端对收到的每一帧进行 CRC 检验 (1) 若得出的余数 R = 0,则判定这个帧没有差错,就接受(accept)。 (2) 若余数 R 0,则判定这个帧有差错,就丢弃。但这种检测方法并不能确定究竟是哪一个或哪几个比特出现了差错。只要经过严格的挑选,并使用位数足够多的除数 P,那么出现检测不到的差错的概率就很小很小。 应当注意 仅用循环冗余检验 CRC 差错检测技术只能做到无差错接受(accept)。“无差错接受”是指:“凡是接受的帧(即不包括丢弃的帧),我们都能以非常接近于 1 的概率认为这些帧在传输过程中没有产生差错”。也就是说:“凡是接收端数据链路层接受的帧都没有传输差错”(有差错的帧就丢弃而不接受)。要做到“可靠传输”(即发送什么就收到什么)就必须再加上确认和重传机制。 3.2 点对点协议 PPP 3.2.1 PPP 协议的特点 现在全世界使用得最多的数据链路层协议是点对点协议 PPP (Point-to-Point Protocol)。用户使用拨号电话线接入因特网时,一般都是使用 PPP 协议。 用户到 ISP 的链路使用 PPP 协议 用户 至 因 特 网已 向 因 特 网 管 理 机 构申 请 到 一 批 IP 地 址ISP接 入 网PPP 协 议 1. PPP 协议应满足的需求 简单这是首要的要求封装成帧 透明性 多种网络层协议 多种类型链路 差错检测 检测连接状态 最大传送单元 网络层地址协商 数据压缩协商 2. PPP 协议不需要的功能纠错 流量控制 序号 多点线路 半双工或单工链路 3.2.2 PPP 协议的帧格式标志字段 F = 0 x7E (符号“0 x”表示后面的字符是用十六进制表示。十六进制的 7E 的二进制表示是 01111110)。地址字段 A 只置为 0 xFF。地址字段实际上并不起作用。控制字段 C 通常置为 0 x03。 PPP 是面向字节的,所有的 PPP 帧的长度都是整数字节。 PPP 协议的帧格式 PPP 有一个 2 个字节的协议字段。 当 协 议 字 段 为 0 x0021 时 , PPP 帧 的 信 息 字 段 就 是IP 数 据 报 。 若 为 0 xC021, 则 信 息 字 段 是 PPP 链 路 控 制 数 据 。 若 为 0 x8021, 则 表 示 这 是 网 络 控 制 数 据 。 IP 数 据 报1 21 1字 节 1 2不 超 过 1500 字 节PPP 帧先 发 送 7E FF 03F A C FCS F7E协 议 信 息 部 分首 部 尾 部 透明传输问题 当 PPP 用在同步传输链路时,协议规定采用硬件来完成比特填充(和 HDLC 的做法一样)。 当 PPP 用在异步传输时,就使用一种特殊的字符填充法。 字符填充 将信息字段中出现的每一个 0 x7E 字节转变成为 2 字节序列(0 x7D, 0 x5E)。 若信息字段中出现一个 0 x7D 的字节, 则将其转变成为 2 字节序列(0 x7D, 0 x5D)。若信息字段中出现 ASCII 码的控制字符(即数值小于 0 x20 的字符),则在该字符前面要加入一个 0 x7D 字节,同时将该字符的编码加以改变。 零比特填充 PPP 协议用在 SONET/SDH 链路时,是使用同步传输(一连串的比特连续传送)。这时 PPP 协议采用零比特填充方法来实现透明传输。在发送端,只要发现有 5 个连续 1,则立即填入一个 0。接收端对帧中的比特流进行扫描。每当发现 5 个连续1时,就把这 5 个连续 1 后的一个 0 删除, 0 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 00 1 0 0 1 1 1 1 1 1 0 0 0 1 0 1 00 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0信 息 字 段 中 出 现 了 和标 志 字 段 F 完 全 一 样的 8 比 特 组 合发 送 端 在 5 个 连 1 之 后填 入 0 比 特 再 发 送 出 去在 接 收 端 把 5 个 连 1之 后 的 0 比 特 删 除 会 被 误 认 为 是 标 志 字 段 F 发 送 端 填 入 0 比 特接 收 端 删 除 填 入 的 0 比 特零 比 特 填 充 3.3 使用广播信道的数据链路层3.3.1 局域网的数据链路层 局域网最主要的特点是:网络为一个单位所拥有,且地理范围和站点数目均有限。 局域网具有如下的一些主要优点: 具 有 广 播 功 能 , 从 一 个 站 点 可 很 方 便 地 访 问 全 网 。局 域 网 上 的 主 机 可 共 享 连 接 在 局 域 网 上 的 各 种 硬 件和 软 件 资 源 。 便 于 系 统 的 扩 展 和 逐 渐 地 演 变 , 各 设 备 的 位 置 可 灵活 调 整 和 改 变 。 提 高 了 系 统 的 可 靠 性 、 可 用 性 和 残 存 性 。 局域网的拓扑 匹 配 电 阻集 线 器干 线 耦 合 器 总 线 网星 形 网 树 形 网 环 形 网 媒体共享技术静态划分信道 频 分 复 用 时 分 复 用 波 分 复 用 码 分 复 用 动态媒体接入控制(多点接入) 随 机 接 入 受 控 接 入 , 如 多 点 线 路 探 询 (polling),或 轮 询 。 以太网的两个标准 DIX Ethernet V2 是世界上第一个局域网产品(以太网)的规约。 IEEE 的 802.3 标准。 DIX Ethernet V2 标准与 IEEE 的 802.3 标准只有很小的差别,因此可以将 802.3 局域网简称为“以太网”。严格说来,“以太网”应当是指符合 DIX Ethernet V2 标准的局域网 数据链路层的两个子层 为了使数据链路层能更好地适应多种局域网标准,802 委员会就将局域网的数据链路层拆成两个子层: 逻 辑 链 路 控 制 LLC (Logical Link Control)子 层 媒 体 接 入 控 制 MAC (Medium Access Control)子 层 。与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关,不管采用何种协议的局域网对 LLC 子层来说都是透明的 以后一般不考虑 LLC 子层 由于 TCP/IP 体系经常使用的局域网是 DIX Ethernet V2 而不是 802.3 标准中的几种局域网,因此现在 802 委员会制定的逻辑链路控制子层 LLC(即 802.2 标准)的作用已经不大了。很多厂商生产的适配器上就仅装有 MAC 协议而没有 LLC 协议。 2. 适配器的作用 网络接口板又称为通信适配器(adapter)或网络接口卡 NIC (Network Interface Card),或“网卡”。 适配器的重要功能: 进 行 串 行 /并 行 转 换 。 对 数 据 进 行 缓 存 。 在 计 算 机 的 操 作 系 统 安 装 设 备 驱 动 程 序 。 实 现 以 太 网 协 议 。 计算机通过适配器和局域网进行通信 硬 件 地 址 至 局 域 网适 配 器( 网 卡 ) 串 行 通 信CPU 和存 储 器生 成 发 送 的 数 据 处 理 收 到 的 数 据 把 帧 发 送 到 局 域 网从 局 域 网 接 收 帧计 算 机IP 地 址 并 行通 信 最初的以太网是将许多计算机都连接到一根总线上。当初认为这样的连接方法既简单又可靠,因为总线上没有有源器件。 3.3.2 CSMA/CD 协议 B向 D发 送 数 据 C D A E匹 配 电 阻 ( 用 来 吸 收 总 线 上 传 播 的 信 号 ) 匹 配 电 阻不 接 受不 接 受不 接 受 接 受B 只 有 D 接 受B 发 送 的 数 据 以太网的广播方式发送 总线上的每一个工作的计算机都能检测到 B 发送的数据信号。 由于只有计算机 D 的地址与数据帧首部写入的地址一致,因此只有 D 才接收这个数据帧。 其他所有的计算机(A, C 和 E)都检测到不是发送给它们的数据帧,因此就丢弃这个数据帧而不能够收下来。具有广播特性的总线上实现了一对一的通信。 载波监听多点接入/碰撞检测 CSMA/CD CSMA/CD 表示 Carrier Sense Multiple Access with Collision Detection。“多点接入”表示许多计算机以多点接入的方式连接在一根总线上。“载波监听”是指每一个站在发送数据之前先要检测一下总线上是否有其他计算机在发送数据,如果有,则暂时不要发送数据,以免发生碰撞。 总线上并没有什么“载波”。因此, “载波监听”就是用电子技术检测总线上有没有其他计算机发送的数据信号。 碰撞检测 “碰撞检测”就是计算机边发送数据边检测信道上的信号电压大小。当几个站同时在总线上发送数据时,总线上的信号电压摆动值将会增大(互相叠加)。当一个站检测到的信号电压摆动值超过一定的门限值时,就认为总线上至少有两个站同时在发送数据,表明产生了碰撞。所谓“碰撞”就是发生了冲突。因此“碰撞检测”也称为“冲突检测”。 检测到碰撞后在发生碰撞时,总线上传输的信号产生了严重的失真,无法从中恢复出有用的信息来。每一个正在发送数据的站,一旦发现总线上出现了碰撞,就要立即停止发送,免得继续浪费网络资源,然后等待一段随机时间后再次发送。 电磁波在总线上的有限传播速率的影响 当某个站监听到总线是空闲时,也可能总线并非真正是空闲的。 A 向 B 发出的信息,要经过一定的时间后才能传送到 B。 B 若在 A 发送的信息到达 B 之前发送自己的帧(因为这时 B 的载波监听检测不到 A 所发送的信息),则必然要在某个时间和 A 发送的帧发生碰撞。碰撞的结果是两个帧都变得无用。 1 kmA Bt 碰 撞t = 2 A 检 测 到 发 生 碰 撞 t = B 发 送 数 据B 检 测 到 发 生 碰 撞 t = t = 0 单 程 端 到 端传 播 时 延 记 为 传 播 时 延 对 载 波 监 听 的 影 响 1 kmA Bt 碰 撞 t = B 检 测 到 信 道 空 闲发 送 数 据t = / 2发 生 碰 撞t = 2 A 检 测 到 发 生 碰 撞 t = B 发 送 数 据B 检 测 到 发 生 碰 撞 t = A BA BA B t = 0 A 检 测 到信 道 空 闲发 送 数 据 A B t = 0 t = B 检 测 到 发 生 碰 撞停 止 发 送STOPt = 2 A 检 测 到发 生 碰 撞 STOPA B 单 程 端 到 端传 播 时 延 记 为 重要特性使用 CSMA/CD 协议的以太网不能进行全双工通信而只能进行双向交替通信(半双工通信)。每个站在发送数据之后的一小段时间内,存在着遭遇碰撞的可能性。 这种发送的不确定性使整个以太网的平均通信量远小于以太网的最高数据率。 争用期最先发送数据帧的站,在发送数据帧后至多经过时间 2 (两倍的端到端往返时延)就可知道发送的数据帧是否遭受了碰撞。以太网的端到端往返时延 2 称为争用期,或碰撞窗口。经过争用期这段时间还没有检测到碰撞,才能肯定这次发送不会发生碰撞。 二进制指数类型退避算法 (truncated binary exponential type)发生碰撞的站在停止发送数据后,要推迟(退避)一个随机时间才能再发送数据。 确 定 基 本 退 避 时 间 , 一 般 是 取 为 争 用 期 2。 定 义 重 传 次 数 k , k 10, 即 k = Min重 传 次 数 , 10 从 整 数 集 合 0,1, (2k 1)中 随 机 地 取 出 一 个数 , 记 为 r。 重 传 所 需 的 时 延 就 是 r 倍 的 基 本退 避 时 间 。 当 重 传 达 16 次 仍 不 能 成 功 时 即 丢 弃 该 帧 , 并向 高 层 报 告 。 争用期的长度 以太网取 51.2 s 为争用期的长度。对于 10 Mb/s 以太网,在争用期内可发送512 bit,即 64 字节。以太网在发送数据时,若前 64 字节没有发生冲突,则后续的数据就不会发生冲突。 强化碰撞 当发送数据的站一旦发现发生了碰撞时: 立 即 停 止 发 送 数 据 ; 再 继 续 发 送 若 干 比 特 的 人 为 干 扰 信 号 (jamming signal), 以 便 让 所 有 用 户 都 知 道 现 在 已 经 发 生了 碰 撞 。 数 据 帧干 扰 信 号TJ人为干扰信号 A BTBt B 发 送 数 据A 检 测到 冲 突 开 始 冲 突 信道占用时间A 发 送 数 据B 也 能 够 检 测 到 冲 突 , 并 立 即 停 止 发 送 数 据 帧 , 接着 就 发 送 干 扰 信 号 。 这 里 为 了 简 单 起 见 , 只 画 出 A 发 送 干 扰 信 号 的 情 况 。 3.4 使用广播信道的以太网3.4.1 使用集线器的星形拓扑传统以太网最初是使用粗同轴电缆,后来演进到使用比较便宜的细同轴电缆,最后发展为使用更便宜和更灵活的双绞线。这种以太网采用星形拓扑,在星形的中心则增加了一种可靠性非常高的设备,叫做集线器(hub) 使用集线器的双绞线以太网 集 线 器 两 对 双 绞 线站 点RJ-45 插 头 星形网 10BASE-T 不用电缆而使用无屏蔽双绞线。每个站需要用两对双绞线,分别用于发送和接收。集线器使用了大规模集成电路芯片,因此这样的硬件设备的可靠性已大大提高了。 以太网在局域网中的统治地位 10BASE-T 的通信距离稍短,每个站到集线器的距离不超过 100 m。这种 10 Mb/s 速率的无屏蔽双绞线星形网的出现,既降低了成本,又提高了可靠性。 10BASE-T 双绞线以太网的出现,是局域网发展史上的一个非常重要的里程碑,它为以太网在局域网中的统治地位奠定了牢固的基础。 集线器的一些特点 集线器是使用电子器件来模拟实际电缆线的工作,因此整个系统仍然像一个传统的以太网那样运行。 使用集线器的以太网在逻辑上仍是一个总线网,各工作站使用的还是 CSMA/CD 协议,并共享逻辑上的总线。 集线器很像一个多接口的转发器,工作在物理层。 具有三个接口的集线器 集线器 网 卡工 作 站网 卡工 作 站 网 卡工 作 站双 绞 线 3.4.3 以太网的 MAC 层1. MAC 层的硬件地址 在局域网中,硬件地址又称为物理地址,或 MAC 地址。 802 标准所说的“地址”严格地讲应当是每一个站的“名字”或标识符。 但鉴于大家都早已习惯了将这种 48 位的“名字”称为“地址”,所以本书也采用这种习惯用法,尽管这种说法并不太严格。 48 位的 MAC 地址 IEEE 的注册管理机构 RA 负责向厂家分配地址字段的前三个字节(即高位 24 位)。地址字段中的后三个字节(即低位 24 位)由厂家自行指派,称为扩展标识符,必须保证生产出的适配器没有重复地址。一个地址块可以生成224个不同的地址。这种 48 位地址称为 MAC-48,它的通用名称是EUI-48。“MAC地址”实际上就是适配器地址或适配器标识符EUI-48。 适配器检查 MAC 地址 适配器从网络上每收到一个 MAC 帧就首先用硬件检查 MAC 帧中的 MAC 地址. 如 果 是 发 往 本 站 的 帧 则 收 下 , 然 后 再 进 行 其 他的 处 理 。 否 则 就 将 此 帧 丢 弃 , 不 再 进 行 其 他 的 处 理 。“发往本站的帧”包括以下三种帧: 单 播 (unicast)帧 ( 一 对 一 ) 广 播 (broadcast)帧 ( 一 对 全 体 ) 多 播 (multicast)帧 ( 一 对 多 ) 以 太 网 MAC 帧 物 理 层MAC层10101010101010 10101010101010101011前 同 步 码 帧 开 始定 界 符7 字 节 1 字 节8 字 节插 入 IP层目 的 地 址 源 地 址 类 型 数 据 FCS6 6 2 4字 节 46 1500IP 数 据 报以太网的 MAC 帧格式 MAC 帧物理层MAC 层IP 层目的地址源地址类型数 据FCS6 6 2 4字节46 1500IP 数据报 以太网 V2 的 MAC 帧格式目 的 地 址 字 段 6 字 节 MAC 帧物理层MAC 层IP 层目的地址源地址类型数 据FCS6 6 2 4字节46 1500IP 数据报 以太网 V2 的 MAC 帧格式源 地 址 字 段 6 字 节 MAC 帧物理层MAC 层IP 层目的地址源地址类型数 据FCS6 6 2 4字节46 1500IP 数据报 以太网 V2 的 MAC 帧格式类 型 字 段 2 字 节类 型 字 段 用 来 标 志 上 一 层 使 用 的 是 什 么 协 议 ,以 便 把 收 到 的 MAC 帧 的 数 据 上 交 给 上 一 层 的 这 个 协 议 。 MAC 帧物理层MAC 层IP 层目的地址源地址类型数 据FCS6 6 2 4字节46 1500IP 数据报 以太网 V2 的 MAC 帧格式数 据 字 段 46 1500 字 节数据字段的正式名称是 MAC 客户数据字段最小长度 64 字节 18 字节的首部和尾部 = 数据字段的最小长度 MAC 帧物理层MAC 层IP 层目的地址源地址类型数 据FCS6 6 2 4字节46 1500IP 数据报 以太网 V2 的 MAC 帧格式FCS 字 段 4 字 节当 传 输 媒 体 的 误 码 率 为 1108 时 ,MAC 子 层 可 使 未 检 测 到 的 差 错 小 于 11014。 当 数 据 字 段 的 长 度 小 于 46 字 节 时 ,应 在 数 据 字 段 的 后 面 加 入 整 数 字 节 的 填 充 字 段 , 以 保 证 以 太 网 的 MAC 帧 长 不 小 于 64 字 节 。 MAC 帧物理层MAC 层IP 层目的地址源地址类型数 据FCS6 6 2 4字节46 1500IP 数据报 以太网 V2 的 MAC 帧格式 10101010101010 10101010101010101011前同步码帧开始定界符7 字节1 字节8 字节插入 在 帧 的 前 面 插 入 的 8 字 节 中 的 第 一 个 字 段 共 7 个 字 节 ,是 前 同 步 码 , 用 来 迅 速 实 现 MAC 帧 的 比 特 同 步 。第 二 个 字 段 是 帧 开 始 定 界 符 , 表 示 后 面 的 信 息 就 是 MAC 帧 。 为了达到比特同步,在 传 输 媒 体 上 实 际 传 送 的要 比 MAC 帧 还 多 8 个 字 节 数据字段的长度与长度字段的值不一致;帧的长度不是整数个字节;用收到的帧检验序列 FCS 查出有差错;数据字段的长度不在 46 1500 字节之间。有效的 MAC 帧长度为 64 1518 字节之间。对于检查出的无效 MAC 帧就简单地丢弃。以太网不负责重传丢弃的帧。 无效的 MAC 帧 帧间最小间隔为 9.6 s,相当于 96 bit 的发送时间。一个站在检测到总线开始空闲后,还要等待 9.6 s 才能再次发送数据。这样做是为了使刚刚收到数据帧的站的接收缓存来得及清理,做好接收下一帧的准备。 帧间最小间隔 3.5 扩展的局域网3.5.1 在物理层扩展局域网主机使用光纤和一对光纤调制解调器连接到集线器 以 太 网集 线 器光 纤 光 纤调 制 解 调 器光 纤调 制 解 调 器 某大学有三个系,各自有一个局域网用多个集线器可连成更大的局域网三 个 独 立 的 碰 撞 域一 系 二 系 三 系碰 撞 域 碰 撞 域 碰 撞 域 用集线器组成更大的局域网都在一个碰撞域中一 系 三 系二 系主 干 集 线 器一 个 更 大 的 碰 撞 域 碰 撞 域 优点 使 原 来 属 于 不 同 碰 撞 域 的 局 域 网 上 的 计 算 机 能 够 进行 跨 碰 撞 域 的 通 信 。 扩 大 了 局 域 网 覆 盖 的 地 理 范 围 。缺点 碰 撞 域 增 大 了 , 但 总 的 吞 吐 量 并 未 提 高 。 如 果 不 同 的 碰 撞 域 使 用 不 同 的 数 据 率 , 那 么 就 不 能用 集 线 器 将 它 们 互 连 起 来 。 用集线器扩展局域网 在数据链路层扩展局域网是使用网桥。网桥工作在数据链路层,它根据 MAC 帧的目的地址对收到的帧进行转发。网桥具有过滤帧的功能。当网桥收到一个帧时,并不是向所有的接口转发此帧,而是先检查此帧的目的 MAC 地址,然后再确定将该帧转发到哪一个接口 3.5.2 在数据链路层扩展局域网 1. 网桥的内部结构 站 表接 口 管 理 软 件 网 桥 协 议 实 体缓 存接 口 1 接 口 2 网 段 B网 段 A 1112 2 2 站 地 址 接 口网 桥网 桥 接 口 1 接 口 21 2 过滤通信量。 扩大了物理范围。提高了可靠性。可互连不同物理层、不同 MAC 子层和不同速率(如10 Mb/s 和 100 Mb/s 以太网)的局域网。 使用网桥带来的好处 网桥使各网段成为隔离开的碰撞域 B2B1碰 撞 域 碰 撞 域 碰 撞 域A B C D E F 存储转发增加了时延。 在MAC 子层并没有流量控制功能。 具有不同 MAC 子层的网段桥接在一起时时延更大。网桥只适合于用户数不太多(不超过几百个)和通信量不太大的局域网,否则有时还会因传播过多的广播信息而产生网络拥塞。这就是所谓的广播风暴。 使用网桥带来的缺点 目前使用得最多的网桥是透明网桥(transparent bridge)。 “透明”是指局域网上的站点并不知道所发送的帧将经过哪几个网桥,因为网桥对各站来说是看不见的。 透明网桥是一种即插即用设备,其标准是 IEEE 802.1D。 2. 透明网桥 这是为了避免产生转发的帧在网络中不断地兜圈子。 透明网桥使用了生成树算法 局 域 网 2局 域 网 1网 桥 2网 桥 1 A F 不 停 地兜 圈 子 A 发 出 的 帧 F1网 桥 1 转 发 的 帧 F2 网 桥 2 转 发 的 帧网 络 资 源 白 白 消 耗 了 1990 年问世的交换式集线器(switching hub),可明显地提高局域网的性能。交换式集线器常称为以太网交换机(switch)或第二层交换机(表明此交换机工作在数据链路层)。以太网交换机通常都有十几个接口。因此,以太网交换机实质上就是一个多接口的网桥,可见交换机工作在数据链路层。4. 多接口网桥以太网交换机 以太网交换机的每个接口都直接与主机相连,并且一般都工作在全双工方式。交换机能同时连通许多对的接口,使每一对相互通信的主机都能像独占通信媒体那样,进行无碰撞地传输数据。 以太网交换机由于使用了专用的交换结构芯片,其交换速率就较高。 以太网交换机的特点 虚拟局域网 VLAN 是由一些局域网网段构成的与物理位置无关的逻辑组。 这 些 网 段 具 有 某 些 共 同 的 需 求 。 每 一 个 VLAN 的 帧 都 有 一 个 明 确 的 标 识 符 , 指 明 发 送 这个 帧 的 工 作 站 是 属 于 哪 一 个 VLAN。虚拟局域网其实只是局域网给用户提供的一种服务,而并不是一种新型局域网。 利用以太网交换机可以很方便地实现虚拟局域网 以 太 网交 换 机 A4 B1以 太 网交 换 机 VLAN3C3B3VLAN1 VLAN2 C1A2A1A3 C2B2以 太 网交 换 机以 太 网交 换 机 三 个 虚 拟 局 域 网 : VLAN1, VLAN2 和 VLAN3 以 太 网交 换 机 A4 B1以 太 网交 换 机 VLAN3C3B3VLAN1 VLAN2 C1A2A1A3 C2B2以 太 网交 换 机以 太 网交 换 机 三 个 虚 拟 局 域 网 VLAN1, VLAN2和 VLAN3 的 构 成 当 B1 向 VLAN2 工 作 组 内 成 员 发 送 数 据 时 ,工 作 站 B2 和 B3 将 会 收 到 广 播 的 信 息 。 以 太 网交 换 机 A4 B1以 太 网交 换 机 VLAN3C3B3VLAN1 VLAN2 C1A2A1A3 C2B2以 太 网交 换 机以 太 网交 换 机 三 个 虚 拟 局 域 网 VLAN1, VLAN2和 VLAN3 的 构 成 B1 发 送 数 据 时 , 工 作 站 A1, A2 和 C1都 不 会 收 到 B1 发 出 的 广 播 信 息 。 以 太 网交 换 机 A4 B1以 太 网交 换 机 VLAN3C3B3VLAN1 VLAN2 C1A2A1A3 C2B2以 太 网交 换 机以 太 网交 换 机 三 个 虚 拟 局 域 网 VLAN1, VLAN2和 VLAN3 的 构 成 虚 拟 局 域 网 限 制 了 接 收 广 播 信 息 的 工 作 站 数 , 使 得 网 络不 会 因 传 播 过 多 的 广 播 信 息 (即 “ 广 播 风 暴 ” )而 引 起 性 能 恶化 。 虚拟局域网协议允许在以太网的帧格式中插入一个 4 字节的标识符,称为 VLAN 标记(tag),用来指明发送该帧的工作站属于哪一个虚拟局域网。 虚拟局域网使用的以太网帧格式 802.3MAC 帧字 节 6 6 2 46 1500 4MAC 帧目 地 地 址 源 地 址 长 度 /类 型 数 据 FCS长 度 /类 型 = 802.1Q 标 记 类 型 标 记 控 制 信 息 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 VID 2 字 节 2 字 节插 入 4 字 节 的 VLAN 标 记 4用 户 优 先 级 CFI 3.6 高速以太网3.6.1 100BASE-T 以太网速率达到或超过 100 Mb/s 的以太网称为高速以太网。在双绞线上传送 100 Mb/s 基带信号的星型拓扑以太网,仍使用 IEEE 802.3 的CSMA/CD 协议。100BASE-T 以太网又称为快速以太网(Fast Ethernet)。 100BASE-T 以太网的特点可在全双工方式下工作而无冲突发生。因此,不使用 CSMA/CD 协议。 MAC 帧格式仍然是 802.3 标准规定的。保持最短帧长不变,但将一个网段的最大电缆长度减小到 100 m。帧间时间间隔从原来的 9.6 s 改为现在的 0.96 s。 三种不同的物理层标准 100BASE-TX 使 用 2 对 UTP 5 类 线 或 屏 蔽 双 绞 线 STP。 100BASE-FX 使 用 2 对 光 纤 。 100BASE-T4 使 用 4 对 UTP 3 类 线 或 5 类 线 。 3.6.2 吉比特以太网允许在 1 Gb/s 下全双工和半双工两种方式工作。使用 802.3 协议规定的帧格式。在半双工方式下使用 CSMA/CD 协议(全双工方式不需要使用 CSMA/CD 协议)。与 10BASE-T 和 100BASE-T 技术向后兼容。 吉比特以太网的物理层 1000BASE-X 基于光纤通道的物理层: 1000BASE-SX SX表 示 短 波 长 1000BASE-LX LX表 示 长 波 长 1000BASE-CX CX表 示 铜 线 1000BASE-T 使 用 4对 5 类 线 UTP 吉比特以太网的配置举例 1 Gb/s 链 路 吉 比 特交 换集 线 器百 兆 比 特 或 吉 比 特 集 线 器100 Mb/s 链 路 中 央 服 务 器 3.6.3 10 吉比特以太网 10 吉比特以太网与 10 Mb/s,100 Mb/s 和 1 Gb/s 以太网的帧格式完全相同。 10 吉比特以太网还保留了 802.3 标准规定的以太网最小和最大帧长,便于升级。 10 吉比特以太网不再使用铜线而只使用光纤作为传输媒体。 10 吉比特以太网只工作在全双工方式,因此没有争用问题,也不使用 CSMA/CD 协议。 吉比特以太网的物理层 局域网物理层 LAN PHY。局域网物理层的数据率是 10.000 Gb/s。可选的广域网物理层 WAN PHY。广域网物理层具有另一种数据率,这是为了和所谓的“Gb/s”的 SONET/SDH(即OC-192/STM-64)相连接。 为 了 使 10 吉 比 特 以 太 网 的 帧 能 够 插 入 到 OC-192/STM-64 帧 的 有 效 载 荷 中 , 就 要 使 用 可 选 的 广域 网 物 理 层 , 其 数 据 率 为 9.95328 Gb/s。 端到端的以太网传输 10 吉比特以太网的出现,以太网的工作范围已经从局域网(校园网、企业网)扩大到城域网和广域网,从而实现了端到端的以太网传输。这种工作方式的好处是: 成 熟 的 技 术 互 操 作 性 很 好 在 广 域 网 中 使 用 以 太 网 时 价 格 便 宜 。 统 一 的 帧 格 式 简 化 了 操 作 和 管 理 。 以太网从 10 Mb/s 到10 Gb/s 的演进 以太网从 10 Mb/s 到 10 Gb/s 的演进证明了以太网是:可扩展的(从 10 Mb/s 到 10 Gb/s)。灵活的(多种传输媒体、全/半双工、共享/交换)。易于安装。稳健性好。 3.6.4 使用高速以太网进行宽带接入以太网已成功地把速率提高到 1 10 Gb/s ,所覆盖的地理范围也扩展到了城域网和广域网,因此现在人们正在尝试使用以太网进行宽带接入。以太网接入的重要特点是它可提供双向的宽带通信,并且可根据用户对带宽的需求灵活地进行带宽升级。采用以太网接入可实现端到端的以太网传输,中间不需要再进行帧格式的转换。这就提高了数据的传输效率和降低了传输的成本。 以太网接入举例:光纤到大楼 FTTB 100 M10 M10 M100 M吉 比 特 以 太 网光 结 点 汇 接 点1 Gb/s 1 Gb/s高 速 汇 接 点 GigaPoP
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!