反常霍尔效应量子霍尔效应拓扑绝缘体

上传人:m**** 文档编号:182589568 上传时间:2023-01-26 格式:DOCX 页数:6 大小:136.94KB
返回 下载 相关 举报
反常霍尔效应量子霍尔效应拓扑绝缘体_第1页
第1页 / 共6页
反常霍尔效应量子霍尔效应拓扑绝缘体_第2页
第2页 / 共6页
反常霍尔效应量子霍尔效应拓扑绝缘体_第3页
第3页 / 共6页
点击查看更多>>
资源描述
反常霍尔效应,量子霍尔效应,拓扑绝缘体反常霍尔效应:1880年Edwin Hall在一个具有铁磁性的金属平板中发现,即使是在没有外加磁场的情 况下(或弱外场),也可以观测到霍尔效应。这种铁磁性材料中的霍尔效应后来被称之为反常 霍尔效应。虽然反常霍尔效应与正常霍尔效应看起来非常相似,但是其物理本质却有着非常 大的差别,这主要是因为在没有外磁场的情况下不存在着外场对电子的轨道效应。最近几年 的研究进展认识到反常霍尔效应的出现直接与材料中的自旋-轨道耦合及电子结构的Berry 相位有关。在具有自旋-轨道耦合并破坏时间反演对称性的情况下,材料的特殊电子结构会 导致动量空间中非零Berry相位的出现,而该Berry相位的存在将会改变电子的运动方程, 从而导致反常霍尔效应的出现。这是通常所说的反常霍尔效应“本征机制”。(1)量子霍尔效应:量子霍尔效应是霍尔效应的量子对应。在正常霍尔效应的基础上,如果外加磁场足够强、 温度足够低,材料体内的所有电子都被局域化到了分立的朗道能级上,形成一个完全绝缘的 状态。然而这时,材料的边界仍然可以导电,形成一些没有“背散射”的导电通道(也就是 不受杂质散射影响的理想导体),从而导致量子霍尔效应的出现。拓扑绝缘体:量子霍尔效应是一种全新的量子物态-拓扑有序态。凝聚态物质中的各种有序态的出 现一般都伴随着某种对称性的破缺,同时伴随有局域序参数及其长程关联的出现。而在量子 霍尔效应中不存在局域的序参量,对该物态的描述需要引入拓扑不变量的概念,所以称之为 拓扑绝缘体。对于量子霍尔效应而言,该拓扑不变量就是整数的Chern-number。(5)一个对拓扑绝缘体不太精确的定义是:1. 其体块(bulk)是一个绝缘体,或者说能谱中有能隙2. 有无能隙的手征(chiral)边缘态,边缘态是topologically protected的:即便有杂 质,有相互作用,只要不关闭bulk的能隙就不会影响边缘态的性质。或者说,要破 坏边缘态,一定要经过一个量子相变。3. 可以用一个拓扑不变量来刻画其性质(2)在拓扑绝缘体的内部,电子能带结构和常规的绝缘体相似,其费米能级位于导带和 价带之间。在拓扑绝缘体的表面存在一些特殊的量子态,这些量子态位于块体能带结构 的带隙之中,从而允许导电。这些量子态可以用类似拓扑学中的亏格的整数表征,是拓扑有序的一个特例。拓扑绝缘体的基本性质是由“量子力学”和“相对论”共同作用的结果, 由于自旋轨道耦合耦合作用,在表面上会产生由时间反演对称性保护的无能隙的自旋分辨的表面 电子态。这种表面态形成一种无有效质量的二维电子气 (与有效质量近似下的二维电子气完全不 同:例如广泛使用的场效应晶体管中的二维电子气) ,它需要用狄拉克方程描述,而不能用薛定 谔方程。(3)拓扑绝缘体的发展:拓扑保护的边缘状态(一维)在碲化汞碲化镉量子阱中被预言,随 后由实验观测证实。很快拓扑绝缘体又被预言存在于含铋的二元化合物三维固体中。第 一个实验实现的三维拓扑绝缘体在锑化铋中被观察到,随后不同实验组又通过角分辨光 电子谱的方法,在锑,碲化铋,硒化铋,碲化锑中观察到了拓扑保护的表面量子态。现 在人们相信,在其他一些材料体系中,也存在拓扑绝缘态。在这些材料中,由于自然存 在的缺陷,费米能级实际上或是位于导带或是位于价带,必须通过掺杂或者通过改变其 电势将费米能级调节到禁带之中。最近几年研究得比较多的是具有时间反演对称性的拓扑 绝缘体,它可以通过Z2不变量来刻画。典型的二维的Z2拓扑绝缘体是HgTe/CdTe量子阱, 其中最直接的物理现象就是可以观察到量子自旋霍尔效应。对于三维的拓扑绝缘体而言,其 材料实现并不是那么直接的。2009年,中科院物理研究所的方忠、戴希研究组,通过计算 预言了一类三维的强拓扑绝缘体系统(Bi2Se3, Bi2Te3, Sb2Te3)具有约0.3eV的体能隙,可 以在室温下保存其拓扑性质【H.J.Zhang, et al., Na ture Phys., (2009)】。后续的多个 实验结果证实了该理论预言的正确性。近日,清华大学物理系薛其坤、陈曦和贾金锋等组成的研究团队,在拓扑绝缘体的实 验研究方面取得一系列突破性进展。他们与中国科学院物理研究所/北京凝聚态物理国家实 验室(筹)研究员马旭村领导的研究组合作,利用分子束外延技术,在硅、碳化硅和蓝宝石 等单晶衬底上制备出了原子级平整的高质量三维拓扑绝缘体(足叫足迥和也黑)薄膜(见图一所示的扫描隧道显微镜照片。照片尺寸:10纳米X10纳米)。原位角分辨光电子 能谱测量显示,这些薄膜具有本征的绝缘体特征。三维拓扑绝缘体的量子薄膜的实现为理论 预言的量子反常霍尔效应、巨大热电效应、激子凝聚等新奇量子现象的研究提供了基础,是 在拓扑绝缘体材料制备方面的一个重要进展。利用这些高质量的薄膜材料,他们发现了拓扑 绝缘体特有的背散射缺失现象,从实验上证明了拓扑量子态受时间反演对称性的保护,观察 到了这种特殊的“两维电子气”在外磁场下的量子化行为(物理学上简称为“朗道量子化”, 见图二),证明了它具有无质量狄拉克费米子的特征。 (图 4)前景:(1)通常的绝缘体材料(如陶瓷、玻璃等)不具有自由载流子,在常温下不导电。 拓扑绝缘体是一类非常特殊的绝缘体,由于自旋一轨道相互作用(相对论效应),在这类绝 缘材料的表面总是存在着无质量狄拉克型的电子态,因而其表面总是金属性的、导电的。电 子是导电的载体,除了负有电荷以外,它还具有一种自旋的性质,就如同地球绕着太阳运转, 而地球本身也在自转一样。在目前广泛使用的计算机芯片中,电子的自转状态是不确定的。 电子从晶体管的一端走到另一端的过程中,不可避免地会发生碰撞,碰撞就会发热,就会耗 散热量。在拓扑绝缘体中,电子自转方向与电流方向之间存在着确定的关系。不同方向运动 的电子互不干扰,从而使能量耗散很低。拓扑绝缘体的独特性质使其在低能耗电子器件和 容错量子计算等领域具有潜在的重要应用价值,有可能对未来的信息技术产生革命性的影响(2)从2005年开始,人们逐步认识到除了量子霍尔效应以外,还存在着多种具有不同 的拓扑性质的量子态。重要的是这些不同的拓扑量子态都可以在凝聚态物质中,通过材料设 计而实现,使得广泛的实验研究成为可能。到目前为止,多种不同的拓扑绝缘体都纷纷被发 现。回过头来我们突然发现,一类最基本的破坏了时间反演对称性的二维磁性拓扑绝缘体还 没有被找到。前面谈到,在低温强磁场下的二维电子气会进入一种拓扑量子态,在此拓扑量 子态中可以观察到量子霍尔效应,然而遗憾的是这并不是真正的拓扑绝缘“体”,该效应的 出现需要借助于外加的强磁场,或者说需要有朗道能级的出现。我们是否能够找到一种真正 的二维磁性拓扑绝缘体材料,它本身就具有特殊的拓扑量子态,在不需要外加磁场的情况下 就能够观察到量子霍尔效应(这时应被称为量子反常霍尔效应)?这是这项研究工作所要瞄准 的关键问题。同时进行这样的探索研究还具有很重要的应用价值。若能实现无外加磁场的量 子化反常霍尔效应,其边缘态可被看成是一根“理想导线”,不存在由于杂质势而导致的背 散射,电阻极低,能耗极小。如果我们能够在现有的电子学技术中利用这种边缘态,将极大 的克服Moore定律的极限。(3)在拓扑绝缘体材料(Bi2Se3, Bi2Te3 and Sb2Te3)的薄膜中通过掺杂过渡金属元素 (Cr或者Fe)可以实现量子化的反常霍尔效应。通过磁性掺杂,借助VanVleck顺磁性,可以实现磁性的拓扑绝缘体,磁性居里温度可以达到70K的量级。通过第一性原理计算和理论 分析,这一磁性原子掺杂体系与一般的稀磁半导体有明显的不同,这里不需要有载流子,体 系仍然保持着绝缘体的状态,且可以实现铁磁的长程有序态。而且由于薄膜中掺杂原子的自 旋极化与强烈的自旋-轨道耦合,在这一体系中无需外加磁场,也无需相应的朗道能级,在 适当的杂质掺杂浓度和温度下,就可以观察到量子化的反常霍尔效应。这一发现为低能量耗 散的新型电子器件设计指出了一个新的发展方向。参考: .com/blog/?p=66(1)(2) 375/27473.htm(4)(5)http:/zh.wikipedia.org/wiki/%E6%8B%93%E6%89%91%E7%BB%9D%E7%BC%98%E4%BD%93
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑环境 > 建筑资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!