高考数学一轮复习第九章解析几何9.7抛物线理

上传人:ch****o 文档编号:155103584 上传时间:2022-09-22 格式:DOC 页数:20 大小:489.50KB
返回 下载 相关 举报
高考数学一轮复习第九章解析几何9.7抛物线理_第1页
第1页 / 共20页
高考数学一轮复习第九章解析几何9.7抛物线理_第2页
第2页 / 共20页
高考数学一轮复习第九章解析几何9.7抛物线理_第3页
第3页 / 共20页
点击查看更多>>
资源描述
第九章 解析几何 9.7 抛物线 理1抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线点F叫做抛物线的焦点,直线l叫做抛物线的准线2抛物线的标准方程与几何性质标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y0x0焦点FFFF离心率e1准线方程xxyy范围x0,yRx0,yRy0,xRy0,xR开口方向向右向左向上向下【知识拓展】1抛物线y22px (p0)上一点P(x0,y0)到焦点F的距离|PF|x0,也称为抛物线的焦半径2y2ax的焦点坐标为,准线方程为x.3设AB是过抛物线y22px(p0)焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2,y1y2p2.(2)弦长|AB|x1x2p(为弦AB的倾斜角)(3)以弦AB为直径的圆与准线相切(4)通径:过焦点垂直于对称轴的弦,长等于2p,通径是过焦点最短的弦【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线()(2)方程yax2(a0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是(,0),准线方程是x.()(3)抛物线既是中心对称图形,又是轴对称图形()(4)AB为抛物线y22px(p0)的过焦点F(,0)的弦,若A(x1,y1),B(x2,y2),则x1x2,y1y2p2,弦长|AB|x1x2p.()1(2016四川)抛物线y24x的焦点坐标是()A(0,2) B(0,1)C(2,0) D(1,0)答案D解析对于抛物线y2ax,其焦点坐标为,对于y24x,焦点坐标为(1,0)2(2016甘肃张掖一诊)过抛物线y24x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1x26,则|PQ|等于()A9 B8 C7 D6答案B解析抛物线y24x的焦点为F(1,0),准线方程为x1.根据题意可得,|PQ|PF|QF|x11x21x1x228.3设抛物线y28x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是()A. B2,2C1,1 D4,4答案C解析Q(2,0),设直线l的方程为yk(x2),代入抛物线方程,消去y整理得k2x2(4k28)x4k20,由(4k28)24k24k264(1k2)0,解得1k1.4(教材改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(2,4),则该抛物线的标准方程为_答案y28x或x2y解析设抛物线方程为y22px(p0)或x22py(p0)将P(2,4)代入,分别得方程为y28x或x2y.5(2017合肥调研)已知抛物线y22px(p0)的准线与圆x2y26x70相切,则p的值为_答案2解析抛物线y22px(p0)的准线为x,圆x2y26x70,即(x3)2y216,则圆心为(3,0),半径为4.又因为抛物线y22px(p0)的准线与圆x2y26x70相切,所以34,解得p2.题型一抛物线的定义及应用例1设P是抛物线y24x上的一个动点,若B(3,2),则|PB|PF|的最小值为_答案4解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|P1F|.则有|PB|PF|P1B|P1Q|BQ|4.即|PB|PF|的最小值为4.引申探究1若将本例中的B点坐标改为(3,4),试求|PB|PF|的最小值解由题意可知点(3,4)在抛物线的外部|PB|PF|的最小值即为B,F两点间的距离,|PB|PF|BF|2,即|PB|PF|的最小值为2.2若将本例中的条件改为:已知抛物线方程为y24x,直线l的方程为xy50,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1d2的最小值解由题意知,抛物线的焦点为F(1,0)点P到y轴的距离d1|PF|1,所以d1d2d2|PF|1.易知d2|PF|的最小值为点F到直线l的距离,故d2|PF|的最小值为3,所以d1d2的最小值为31.思维升华与抛物线有关的最值问题,一般情况下都与抛物线的定义有关由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径设P是抛物线y24x上的一个动点,则点P到点A(1,1)的距离与点P到直线x1的距离之和的最小值为_答案解析如图,易知抛物线的焦点为F(1,0),准线是x1,由抛物线的定义知:点P到直线x1的距离等于点P到F的距离于是,问题转化为在抛物线上求一点P,使点P到点A(1,1)的距离与点P到F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为.题型二抛物线的标准方程和几何性质命题点1求抛物线的标准方程例2已知双曲线C1:1(a0,b0)的离心率为2.若抛物线C2:x22py(p0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()Ax2y Bx2yCx28y Dx216y答案D解析1的离心率为2,2,即4,3,.x22py(p0)的焦点坐标为,1的渐近线方程为yx,即yx.由题意得2,p8.故C2的方程为x216y.命题点2抛物线的几何性质例3已知抛物线y22px(p0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:(1)y1y2p2,x1x2;(2)为定值;(3)以AB为直径的圆与抛物线的准线相切证明(1)由已知得抛物线焦点坐标为(,0)由题意可设直线方程为xmy,代入y22px,得y22p,即y22pmyp20.(*)则y1,y2是方程(*)的两个实数根,所以y1y2p2.因为y2px1,y2px2,所以yy4p2x1x2,所以x1x2.(2).因为x1x2,x1x2|AB|p,代入上式,得(定值)(3) 设AB的中点为M(x0,y0),分别过A,B作准线的垂线,垂足为C,D,过M作准线的垂线,垂足为N,则|MN|(|AC|BD|)(|AF|BF|)|AB|.所以以AB为直径的圆与抛物线的准线相切思维升华(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此(1)(2016全国乙卷)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点已知|AB|4,|DE|2,则C的焦点到准线的距离为()A2 B4 C6 D8(2)(2016昆明三中、玉溪一中统考)抛物线y22px(p0)的焦点为F,已知点A、B为抛物线上的两个动点,且满足AFB120.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为()A. B1 C. D2答案(1)B(2)A解析(1)不妨设抛物线C:y22px(p0),则圆的方程可设为x2y2r2(r0),如图,又可设A(x0,2),D,点A(x0,2)在抛物线y22px上,82px0,点A(x0,2)在圆x2y2r2上,x8r2,点D在圆x2y2r2上,52r2,联立,解得p4,即C的焦点到准线的距离为p4,故选B.(2)设|AF|a,|BF|b,分别过A、B作准线的垂线,垂足分别为Q、P,由抛物线的定义知,|AF|AQ|,|BF|BP|,在梯形ABPQ中,2|MN|AQ|BP|ab.|AB|2a2b22abcos 120a2b2ab(ab)2ab.又ab()2,所以(ab)2ab(ab)2(ab)2(ab)2,得到|AB|(ab),所以,即的最大值为.题型三直线与抛物线的综合问题命题点1直线与抛物线的交点问题例4已知抛物线C:y28x与点M(2,2),过C的焦点且斜率为k的直线与C交于A、B两点若0,则k_.答案2解析抛物线C的焦点为F(2,0),则直线方程为yk(x2),与抛物线方程联立,消去y化简得k2x2(4k28)x4k20.设点A(x1,y1),B(x2,y2)则x1x24,x1x24.所以y1y2k(x1x2)4k,y1y2k2x1x22(x1x2)416.因为(x12,y12)(x22,y22)(x12)(x22)(y12)(y22)x1x22(x1x2)y1y22(y1y2)80,将上面各个量代入,化简得k24k40,所以k2.命题点2与抛物线弦的中点有关的问题例5(2016全国丙卷)已知抛物线C:y22x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点(1)若F在线段AB上,R是PQ的中点,证明:ARFQ;(2)若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程(1)证明由题意知,F,设l1:ya,l2:yb,则ab0,且A,B,P,Q,R.记过A,B两点的直线为l,则l的方程为2x(ab)yab0.由于F在线段AB上,故1ab0.记AR的斜率为k1,FQ的斜率为k2,则k1bk2.所以ARFQ.(2)解设过AB的直线为l,设l与x轴的交点为D(x1,0),则SABF|ba|FD|ba|,SPQF.由题意可得|ba|,所以x11,x10(舍去)设满足条件的AB的中点为E(x,y)当AB与x轴不垂直时,由kABkDE可得(x1)而y,所以y2x1(x1)当AB与x轴垂直时,E与D重合,此时E点坐标为(1,0),所以,所求轨迹方程为y2x1(x1)思维升华(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点若过抛物线的焦点,可直接使用公式|AB|x1x2p,若不过焦点,则必须用一般弦长公式(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法提醒:涉及弦的中点、斜率时一般用“点差法”求解(2017北京东城区质检)已知抛物线C:y22px(p0)的焦点为F,直线y4与y轴的交点为P,与C的交点为Q,且|QF|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A、B两点,若AB的垂直平分线l与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程解(1)设Q(x0,4),代入y22px,得x0.所以|PQ|,|QF|x0.由题设得,解得p2(舍去)或p2.所以C的方程为y24x.(2)依题意知l与坐标轴不垂直,故可设l的方程为xmy1(m0)代入y24x,得y24my40.设A(x1,y1),B(x2,y2),则y1y24m,y1y24.故AB的中点为D(2m21,2m),|AB|y1y2|4(m21)又l的斜率为m,所以l的方程为xy2m23.将上式代入y24x,并整理得y2y4(2m23)0.设M(x3,y3),N(x4,y4),则y3y4,y3y44(2m23)故MN的中点为E(2m23,),|MN| |y3y4|,由于MN垂直平分AB,故A,M,B,N四点在同一圆上等价于|AE|BE|MN|,从而|AB|2|DE|2|MN|2,即4(m21)2(2m)2(2)2,化简得m210,解得m1或m1.所求直线l的方程为xy10或xy10.7直线与圆锥曲线问题的求解策略典例(12分)已知抛物线C:ymx2(m0),焦点为F,直线2xy20交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)求抛物线C的焦点坐标;(2)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值;(3)是否存在实数m,使ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,请说明理由思维点拨(3)中证明0.解(1)抛物线C:x2y,它的焦点F(0,)2分(2)|RF|yR,23,得m.4分(3)存在,联立方程消去y得mx22x20,依题意,有(2)24m(2)0m.6分设A(x1,mx),B(x2,mx),则(*)P是线段AB的中点,P(,),即P(,yP),Q(,)8分得(x1,mx),(x2,mx),若存在实数m,使ABQ是以Q为直角顶点的直角三角形,则0,即(x1)(x2)(mx)(mx)0,10分结合(*)化简得40,即2m23m20,m2或m,而2(,),(,)存在实数m2,使ABQ是以Q为直角顶点的直角三角形12分解决直线与圆锥曲线的位置关系的一般步骤:第一步:联立方程,得关于x或y的一元二次方程;第二步:写出根与系数的关系,并求出0时参数范围(或指出直线过曲线内一点);第三步:根据题目要求列出关于x1x2,x1x2(或 y1y2,y1y2)的关系式,求得结果;第四步:反思回顾,查看有无忽略特殊情况1(2017昆明调研)已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过F的直线与抛物线C交于A、B两点,如果12,那么抛物线C的方程为()Ax28y Bx24yCy28x Dy24x答案C解析由题意,设抛物线方程为y22px(p0),直线方程为xmy,联立消去x得y22pmyp20,设A(x1,y1),B(x2,y2),则y1y22pm,y1y2p2,得x1x2y1y2(my1)(my2)y1y2m2y1y2(y1y2)y1y2p212p4,即抛物线C的方程为y28x.2已知抛物线y22px(p0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()Ax1 Bx1 Cx2 Dx2答案B解析y22px(p0)的焦点坐标为(,0),过焦点且斜率为1的直线方程为yx,即xy,将其代入y22px,得y22pyp2,即y22pyp20.设A(x1,y1),B(x2,y2),则y1y22p,p2,抛物线的方程为y24x,其准线方程为x1.3(2016上饶四校联考)设抛物线C:y23px(p0)的焦点为F,点M在C上,|MF|5,若以MF为直径的圆过点(0,2),则抛物线C的方程为()Ay24x或y28x By22x或y28xCy24x或y216x Dy22x或y216x答案C解析抛物线C:y23px(p0)的焦点为F(,0),|OF|,以MF为直径的圆过点(0,2),设A(0,2),连接AF,AM,可得AFAM,在RtAOF中,|AF| ,sinOAF,根据抛物线的定义,得直线AO切以MF为直径的圆于点A,OAFAMF,可得在RtAMF中,sinAMF,|MF|5,|AF| , ,整理得4,解得p或p,C的方程为y24x或y216x.4已知抛物线y22px(p0)的焦点弦AB的两端点坐标分别为A(x1,y1),B(x2,y2),则的值一定等于()A4 B4 Cp2 Dp2答案A解析若焦点弦ABx轴,则x1x2,x1x2;y1p,y2p,y1y2p2,4.若焦点弦AB不垂直于x轴,可设AB的直线方程为yk(x),联立y22px,得k2x2(k2p2p)x0,则x1x2.y1y2p2.故4.5.如图,过抛物线y22px(p0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,若|BC|2|BF|,且|AF|3,则此抛物线的方程为()Ay29xBy26xCy23xDy2x答案C解析如图,分别过A、B作AA1l于A1,BB1l于B1,由抛物线的定义知:|AF|AA1|,|BF|BB1|,|BC|2|BF|,|BC|2|BB1|,BCB130,AFx60,连接A1F,则AA1F为等边三角形,过F作FF1AA1于F1,则F1为AA1的中点,设l交x轴于K,则|KF|A1F1|AA1|AF|,即p,抛物线方程为y23x.故选C.6抛物线y24x的焦点为F,点P(x,y)为该抛物线上的动点,若点A(1,0),则的最小值是()A. B. C. D.答案B解析抛物线y24x的准线方程为x1,如图,过P作PN垂直直线x1于N,由抛物线的定义可知|PF|PN|,连接PA,在RtPAN中,sinPAN,当最小时,sinPAN最小,即PAN最小,即PAF最大,此时,PA为抛物线的切线,设PA的方程为yk(x1),联立得k2x2(2k24)xk20,所以(2k24)24k40,解得k1,所以PAFNPA45,cosNPA,故选B.7设F为抛物线C:y23x的焦点,过F且倾斜角为30的直线交C于A,B两点,则|AB|_.答案12解析焦点F的坐标为,方法一直线AB的斜率为,所以直线AB的方程为y,即yx,代入y23x,得x2x0.设A(x1,y1),B(x2,y2),则x1x2,所以|AB|x1x2p12.方法二由抛物线焦点弦的性质可得|AB|12.8已知抛物线C:y22px(p0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B,若,则p_.答案2解析如图, 由AB的斜率为,知60,又,M为AB的中点过点B作BP垂直准线l于点P,则ABP60,BAP30,|BP|AB|BM|.M为焦点,即1,p2.9已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y28x的焦点重合,A,B是C的准线与E的两个交点,则|AB|_.答案6解析抛物线y28x的焦点为(2,0),准线方程为x2.设椭圆方程为1(ab0),由题意,c2,可得a4,b216412.故椭圆方程为1.把x2代入椭圆方程,解得y3.从而|AB|6.*10.设直线l与抛物线y24x相交于A,B两点,与圆(x5)2y2r2(r0)相切于点M,且M为线段AB的中点若这样的直线l恰有4条,则r的取值范围是_答案(2,4)解析如图,设A(x1,y1),B(x2,y2),M(x0,y0),则两式相减得,(y1y2)(y1y2)4(x1x2)当l的斜率k不存在时,符合条件的直线l必有两条当k存在时,x1x2,则有2,又y1y22y0,所以y0k2.由CMAB,得k1,即y0k5x0,因此25x0,x03,即M必在直线x3上将x3代入y24x,得y212,则有2y02.因为点M在圆上,所以(x05)2yr2,故r2y44(为保证有4条,在k存在时,y00),所以4r216,即2r0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x10)上相异两点,P,Q到y轴的距离的积为4,且0.(1)求该抛物线的标准方程;(2)过点Q的直线与抛物线的另一交点为R,与x轴的交点为T,且Q为线段RT的中点,试求弦PR长度的最小值解(1)设P(x1,y1),Q(x2,y2),0,则x1x2y1y20.又点P,Q在抛物线上,y2px1,y2px2,代入得y1y20,y1y24p2,|x1x2|4p2.又|x1x2|4,4p24,p1,抛物线的标准方程为y22x.(2)设直线PQ过点E(a,0)且方程为xmya,联立方程组消去x得y22my2a0,设直线PR与x轴交于点M(b,0),则可设直线PR的方程为xnyb,并设R(x3,y3),同理可知,由可得.由题意得,Q为线段RT的中点,y32y2,b2a.又由(1)知,y1y24,代入,可得2a4,a2,b4,y1y38,|PR|y1y3|24.当n0,即直线PR垂直于x轴时,|PR|取最小值4.*13.如图,由部分抛物线:y2mx1(m0,x0)和半圆x2y2r2(x0)所组成的曲线称为“黄金抛物线C”,若“黄金抛物线C”经过点(3,2)和(,)(1)求“黄金抛物线C”的方程;(2)设P(0,1)和Q(0,1),过点P作直线l与“黄金抛物线C”相交于A,P,B三点,问是否存在这样的直线l,使得QP平分AQB?若存在,求出直线l的方程;若不存在,说明理由解(1)“黄金抛物线C”过点(3,2)和(,),r2()2()21,43m1,m1.“黄金抛物线C”的方程为y2x1(x0)和x2y21(x0)(2)假设存在这样的直线l,使得QP平分AQB,显然直线l的斜率存在且不为0,设直线l:ykx1,联立消去y,得k2x2(2k1)x0,xB,yB,即B(,),kBQ,联立消去y,得(k21)x22kx0,xA,yA,即A(,),kAQ,QP平分AQB,kAQkBQ0,0,解得k1,由图形可得k1应舍去,k1,存在直线l:y(1)x1,使得QP平分AQB.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!