(全国120套)2013年中考数学试卷分类汇编 等腰直角三角形

上传人:wu****ei 文档编号:147180964 上传时间:2022-09-01 格式:DOC 页数:8 大小:160.50KB
返回 下载 相关 举报
(全国120套)2013年中考数学试卷分类汇编 等腰直角三角形_第1页
第1页 / 共8页
(全国120套)2013年中考数学试卷分类汇编 等腰直角三角形_第2页
第2页 / 共8页
(全国120套)2013年中考数学试卷分类汇编 等腰直角三角形_第3页
第3页 / 共8页
点击查看更多>>
资源描述
等腰直角三角形1、(2013衢州)将一个有45角的三角板的直角顶点放在一张宽为3cm的纸带边沿上另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30角,如图,则三角板的最大边的长为()A3cmB6cmCcmDcm考点:含30度角的直角三角形;等腰直角三角形分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30角所对的边等于斜边的一半,可求出有45角的三角板的直角直角边,再由等腰直角三角形求出最大边解答:解:过点C作CDAD,CD=3,在直角三角形ADC中,CAD=30,AC=2CD=23=6,又三角板是有45角的三角板,AB=AC=6,BC2=AB2+AC2=62+62=72,BC=6,故选:D点评:此题考查的知识点是含30角的直角三角形及等腰直角三角形问题,关键是先由求得直角边,再由勾股定理求出最大边2、(2013内江)已知,如图,ABC和ECD都是等腰直角三角形,ACD=DCE=90,D为AB边上一点求证:BD=AE考点:全等三角形的判定与性质;等腰直角三角形专题:证明题分析:根据等腰直角三角形的性质可得AC=BC,CD=CE,再根据同角的余角相等求出ACE=BCD,然后利用“边角边”证明ACE和BCD全等,然后根据全等三角形对应边相等即可证明解答:证明:ABC和ECD都是等腰直角三角形,AC=BC,CD=CE,ACD=DCE=90,ACE+ACD=BCD+ACD,ACE=BCD,在ACE和BCD中,ACEBCD(SAS),BD=AE点评:本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键3、(2013常德压轴题)已知两个共一个顶点的等腰RtABC,RtCEF,ABC=CEF=90,连接AF,M是AF的中点,连接MB、ME(1)如图1,当CB与CE在同一直线上时,求证:MBCF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当BCE=45时,求证:BM=ME考点:三角形中位线定理;全等三角形的判定与性质;等腰直角三角形3718684分析:(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为ADF的中位线即可;证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得ABEF,再根据两直线平行,内错角相等可得BAM=DFM,根据中点定义可得AM=MF,然后利用“角边角”证明ABM和FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到BDE是等腰直角三角形,根据等腰直角三角形的性质求出EBM=45,从而得到EBM=ECF,再根据同位角相等,两直线平行证明MBCF即可,(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EMBD,求出BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明ACGDCF,得到DF=AG,从而证明BM=ME;证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出ABCF,再根据两直线平行,内错角相等求出BAM=DFM,根据中点定义可得AM=MF,然后利用“角边角”证明ABM和FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明BCE和DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得BEC=DEF,然后求出BED=CEF=90,再根据等腰直角三角形的性质证明即可解答:(1)证法一:如答图1a,延长AB交CF于点D,则易知ABC与BCD均为等腰直角三角形,AB=BC=BD,点B为线段AD的中点,又点M为线段AF的中点,BM为ADF的中位线,BMCF证法二:如答图1b,延长BM交EF于D,ABC=CEF=90,ABCE,EFCE,ABEF,BAM=DFM,M是AF的中点,AM=MF,在ABM和FDM中,ABMFDM(ASA),AB=DF,BE=CEBC,DE=EFDF,BE=DE,BDE是等腰直角三角形,EBM=45,在等腰直角CEF中,ECF=45,EBM=ECF,MBCF;(2)解法一:如答图2a所示,延长AB交CF于点D,则易知BCD与ABC为等腰直角三角形,AB=BC=BD=a,AC=AD=a,点B为AD中点,又点M为AF中点,BM=DF分别延长FE与CA交于点G,则易知CEF与CEG均为等腰直角三角形,CE=EF=GE=2a,CG=CF=a,点E为FG中点,又点M为AF中点,ME=AGCG=CF=a,CA=CD=a,AG=DF=a,BM=ME=a=a解法二:CB=a,CE=2a,BE=CECB=2aa=a,ABMFDM,BM=DM,又BED是等腰直角三角形,BEM是等腰直角三角形,BM=ME=BE=a;(3)证法一:如答图3a,延长AB交CE于点D,连接DF,则易知ABC与BCD均为等腰直角三角形,AB=BC=BD,AC=CD,点B为AD中点,又点M为AF中点,BM=DF延长FE与CB交于点G,连接AG,则易知CEF与CEG均为等腰直角三角形,CE=EF=EG,CF=CG,点E为FG中点,又点M为AF中点,ME=AG在ACG与DCF中,ACGDCF(SAS),DF=AG,BM=ME证法二:如答图3b,延长BM交CF于D,连接BE、DE,BCE=45,ACD=452+45=135BAC+ACF=45+135=180,ABCF,BAM=DFM,M是AF的中点,AM=FM,在ABM和FDM中,ABMFDM(ASA),AB=DF,BM=DM,AB=BC=DF,在BCE和DFE中,BCEDFE(SAS),BE=DE,BEC=DEF,BED=BEC+CED=DEF+CED=CEF=90,BDE是等腰直角三角形,又BM=DM,BM=ME=BD,故BM=ME点评:本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点4、(2013湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在RtABC中,AB=BC,ABC=90,BOAC,于点O,点PD分别在AO和BC上,PB=PD,DEAC于点E,求证:BPOPDE(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程(2)特殊位置,证明结论若PB平分ABO,其余条件不变求证:AP=CD(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P时,满足题中条件的点D也随之在直线BC上运动到点D,请直接写出CD与AP的数量关系(不必写解答过程)考点:全等三角形的判定与性质分析:(1)求出3=4,BOP=PED=90,根据AAS证BPOPDE即可;(2)求出ABP=4,求出ABPCPD,即可得出答案;(3)设OP=CP=x,求出AP=3x,CD=x,即可得出答案解答:(1)证明:PB=PD,2=PBD,AB=BC,ABC=90,C=45,BOAC,1=45,1=C=45,3=PBO1,4=2C,3=4,BOAC,DEAC,BOP=PED=90,在BPO和PDE中BPOPDE(AAS);(2)证明:由(1)可得:3=4,BP平分ABO,ABP=3,ABP=4,在ABP和CPD中ABPCPD(AAS),AP=CD(3)解:CD与AP的数量关系是CD=AP理由是:设OP=PC=x,则AO=OC=2x=BO,则AP=2x+x=3x,由(2)知BO=PE,PE=2x,CE=2xx=x,E=90,ECD=ACB=45,DE=x,由勾股定理得:CD=x,即AP=3x,CD=x,CD与AP的数量关系是CD=AP点评:本题考查了全等三角形的性质和判定,等腰直角三角形性质,等腰三角形性质等知识点的综合应用,主要考查学生的推理和计算能力
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!