资源描述
2.4.2 抛物线的简单几何性质,定义:在平面内,与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.,抛物线的定义及标准方程,y2=-2px (p0),x2=2py (p0),y2=2px (p0),x2=-2py (p0),一、温故知新,由抛物线y2 =2px(p0),所以抛物线的范围为,二、探索新知,如何研究抛物线y2 =2px(p0)的几何性质?,抛物线在y轴的右侧,当x的值增大时,y也增大,这说明抛物线向右上方和右下方无限延伸。,即点(x,-y) 也在抛物线上,故 抛物线y2 = 2px(p0)关于x轴对称.,则 (-y)2 = 2px,若点(x,y)在抛物线上, 即满足y2 = 2px,,定义:抛物线与它的轴的交点叫做抛物线的顶点。,y2 = 2px (p0)中, 令y=0,则x=0.,即:抛物线y2 = 2px (p0)的顶点(0,0).,注:这与椭圆有四个顶点,双曲线有两个顶点不同。,抛物线上的点与焦点的距离和它到准线的距离之比,叫做抛物线的离心率。,由定义知, 抛物线y2 = 2px (p0)的离心率为e=1.,下面请大家得出其余三种标准方程抛物线的几何性质。,(二)归纳:抛物线的几何性质,y2 = 2px (p0),y2 = -2px (p0),x2 = 2py (p0),x2 = -2py (p0),x0 yR,x0 yR,y0 xR,y 0 xR,(0,0),x轴,y轴,1,特点:,1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;,2.抛物线只有一条对称轴,没有 对称中心;,3.抛物线只有一个顶点、 一个焦点、一条准线;,4.抛物线的离心率是确定的,为1;,思考:抛物线标准方程中的p对抛物线开口的影响.,P越大,开口越开阔,补充(1)通径:,通过焦点且垂直对称轴的直线, 与抛物线相交于两点,连接这 两点的线段叫做抛物线的通径。,|PF|=x0+p/2,F,P,通径的长度:2P,P越大,开口越开阔,(2)焦半径:,连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。,焦半径公式:,(标准方程中2p的几何意义),利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图。,(3)焦点弦:通过焦点的直线与抛物线相交于两点,连接两点的线段。焦点弦公式:F|=,|AB|=x1+x2+p,y2 = 2px (p0),y2 = -2px (p0),x2 = 2py (p0),x2 = -2py (p0),关于x轴对称,关于x轴对称,关于y轴对称,关于y轴对称,(0,0),(0,0),(0,0),(0,0),因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(,),,解:,所以设方程为:,因此所求抛物线标准方程为:,三、典例精析,坐标轴,当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m 0) (x2=2my (m0),可避免讨论,例:已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(,),求它的标准方程.,练习:,1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是 .,2、已知点A(-2,3)与抛物线 的焦点的距离是5,则P= 。,4,例2、斜率为1的直线 经过抛物线 的焦点F,且与抛物线相交于A,B两点,求线段AB的长。,分析:直线与抛物线有一个公共点的情况有两种情形:一种是直线平行于抛物线的对称轴; 另一种是直线与抛物线相切,判断直线与抛物线位置关系的操作程序,把直线方程代入抛物线方程,得到一元一次方程,得到一元二次方程,直线与抛物线的 对称轴平行,相交(一个交点),计 算 判 别 式,分析: 直线与抛物线有两个公共点时0,分析: 直线与抛物线没有公共点时0,注:在方程中,二次项系数含有k,所以要对k进行讨论 作图要点:画出直线与抛物线只有一个公共点时的情形,观察直线绕点P转动的情形,例4、已知直线l:yx1和抛物线 C:y24x,设直线与抛物线的交点为 A、B,求AB的长.,例5、已知抛物线C:y24x,设直线与抛物线两交点为A、B,且线段AB中点为M(2,1),求直线l的方程.,说明:中点弦问题的解决方法: 联立直线方程与曲线方程求解 点差法,
展开阅读全文