资源描述
专题三数列、推理与证明第1讲等差数列、等比数列(推荐时间:50分钟)一、选择题1已知数列an是公比为q的等比数列,且a1,a3,a2成等差数列,则公比q的值为()A1或 B1C D22已知等比数列an中,a4a610,则a1a72a3a7a3a9的值等于()A10 B20 C60 D1003(2011大纲全国)设Sn为等差数列an的前n项和,若a11,公差d2,Sk2Sk24,则k等于()A8 B7 C6 D54等比数列an的前n项和为Sn,已知S1,2S2,3S3成等差数列,则an的公比为()A2 B3 C. D.5设an是公差为正数的等差数列,若a1a2a315,a1a2a380,则a11a12a13的值为()A120 B105C90 D756(2011辽宁)若等比数列an满足anan116n,则公比为()A2 B4 C8 D16二、填空题7(2011湖南)设Sn是等差数列an (nN*)的前n项和,且a11,a47,则S5_.8已知数列an的前n项和Sn满足log2(Sn1)n1,则数列an的通项公式是_9(2010江苏)函数yx2(x0)的图象在点(ak,a)处的切线与x轴的交点的横坐标为ak1,其中kN*,a116,则a1a3a5的值是_10设等差数列an的各项均为整数,其公差d0,a56,若a3,a5,am (m5)是公比为q (q0)的等比数列,则m的值为_三、解答题11已知数列an的首项a1a,anan11(nN*,n2)若bnan2(nN*)(1)问数列bn是否能构成等比数列?并说明理由(2)若已知a11,设数列anbn的前n项和为Sn,求Sn.12.(2011大纲全国)设等比数列an的前n项和为Sn,已知a26,6a1a330,求an和Sn.13已知数列an满足an2an12n1(n2),且a481.(1)求数列的前三项a1,a2,a3;(2)求证:数列为等差数列,并求an.答案1A 2D3D4D5B6B725 8an 921 101111解(1)b1a2,anbn2,所以bn2(bn12)1,bnbn1.所以,当a2时,数列bn能构成等比数列;当a2时,数列bn不能构成等比数列(2)当a1,得bn()n1,an2()n1,anbn()n12()n1,所以Sn2(1)4(1).12解设an的公比为q,由题设得解得或当a13,q2时,an32n1,Sn3(2n1);当a12,q3时,an23n1,Sn3n1.13(1)解an2an12n1,a42a3241.又a481,a333,同理:a213,a15.(2)证明由an2an12n1(n2),得1,1,是等差数列;的公差d1.(n1)1n1.an(n1)2n1.
展开阅读全文