资源描述
2.4.2 抛物线的简单几何性质,定义:在平面内,与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.,抛物线的定义及标准方程,y2=-2px (p0),x2=2py (p0),y2=2px (p0),x2=-2py (p0),一、温故知新,由抛物线y2 =2px(p0),所以抛物线的范围为,二、探索新知,如何研究抛物线y2 =2px(p0)的几何性质?,抛物线在y轴的右侧,当x的值增大时,y也增大,这说明抛物线向右上方和右下方无限延伸。,即点(x,-y) 也在抛物线上,故 抛物线y2 = 2px(p0)关于x轴对称.,则 (-y)2 = 2px,若点(x,y)在抛物线上, 即满足y2 = 2px,,定义:抛物线与它的轴的交点叫做抛物线的顶点。,y2 = 2px (p0)中, 令y=0,则x=0.,即:抛物线y2 = 2px (p0)的顶点(0,0).,注:这与椭圆有四个顶点,双曲线有两个顶点不同。,抛物线上的点与焦点的距离和它到准线的距离之比,叫做抛物线的离心率。,由定义知, 抛物线y2 = 2px (p0)的离心率为e=1.,下面请大家得出其余三种标准方程抛物线的几何性质。,(二)归纳:抛物线的几何性质,y2 = 2px (p0),y2 = -2px (p0),x2 = 2py (p0),x2 = -2py (p0),x0 yR,x0 yR,y0 xR,y 0 xR,(0,0),x轴,y轴,1,特点:,1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;,2.抛物线只有一条对称轴,没有 对称中心;,3.抛物线只有一个顶点、 一个焦点、一条准线;,4.抛物线的离心率是确定的,为1;,思考:抛物线标准方程中的p对抛物线开口的影响.,P越大,开口越开阔,补充(1)通径:,通过焦点且垂直对称轴的直线, 与抛物线相交于两点,连接这 两点的线段叫做抛物线的通径。,|PF|=x0+p/2,F,P,通径的长度:2P,P越大,开口越开阔,(2)焦半径:,连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。,焦半径公式:,(标准方程中2p的几何意义),利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图。,因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(, ),,解:,所以设方程为:,因此所求抛物线标准方程为:,例:已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(, ),求它的标准方程.,三、典例精析,坐标轴,当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m 0) (x2=2my (m0),可避免讨论,例2:探照灯反射镜的轴截面是抛物线的一部分,光源 位于抛物线的焦点处。已知灯口圆的直径为60cm,灯深 40cm,求抛物线的标准方程和焦点位置。,(40,30),解:,设抛物线的标准方程为:y2=2px,由条件可得A (40,30),代入方程得:,302=2p40,解之: p=,故所求抛物线的标准方程为: y2= x,焦点为( ,0),练习:,1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是 .,2、已知点A(-2,3)与抛物线 的焦点的距离是5,则P= 。,4,例3、斜率为1的直线 经过抛物线 的焦点F,且与抛物线相交于A,B两点,求线段AB的长。,四、归纳总结,抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;,抛物线只有一条对称轴,没有对称中心;,抛物线的离心率是确定的,等于;,抛物线只有一个顶点,一个焦点,一条准线;,抛物线的通径为2P, 2p越大,抛物线的张口越大.,1、范围:,2、对称性:,3、顶点:,4、离心率:,5、通径:,再见!,1.已知M为抛物线 上一动点,F为抛物线的焦点, 定点P(3,1),则 的最小值为( ) (A)3 (B)4 (C)5 (D)6,B,.,例3:图中是抛物线形拱桥,当水面在 l 时,拱顶离水面2米,水面宽4米. 水下降1米后,水面宽多少?,o,A,思考题,2,B,A(2,2),x2=2y,B(1,y),y=0.5,B到水面的距离为1.5米,不能安全通过,y=3代入得,例题3,探照灯、汽车前灯的反光曲面,手电筒的反光镜面、太阳灶的镜面都是抛物镜面。,抛物镜面:抛物线绕其对称轴旋转而成的曲面。,灯泡放在抛物线的焦点位置上,通过镜面反射就变 成了平行光束,这就是探照灯、汽车前灯、手电筒的 设计原理。,平行光线射到抛物镜面上,经镜面反射后,反射光线都 经过抛物线的焦点,这就是太阳灶能把光能转化为热能 的理论依据。,
展开阅读全文