资源描述
第二讲,需求预测张志英上海交通大学工业工程与管理系2007年5月8/1/20221提纲简介定性预测方法定量预测方法预测系统及计算机软件8/1/20222预测的定义预测预测:猜测出未来变量值,例如需求、库存等8/1/20223预测的重要性8/1/20224预测的重要性(Contd)需求预测(Demand estimates)是计划与作业管理的最开始步骤.销售预测(Sales forecasts)部分基于DE.销售预测是商业策略(Business Strategy)和产品资源(Resources)预测的基础.需求预测是中期生产计划和主生产计划的前提条件8/1/20225预测的重要性(Contd)新设施规划 可能要5年的时间去设计和建设新工厂并实现新的产品流程.产品规划 需求每个月都在改变,而我们可能需要几个月去改变生产线的能力。工作调度 对服务(包括职员)的需求每天都在变,但员工的安排一般都需要提前进行。8/1/20226预测方法定性定量8/1/20227定性方法不需要需求的历史,因此适合于新产品或服务直觉到科学推测方法依赖于产品的生命周期a products life cycle stage事物的因果关系事物的发展变化8/1/20228定性方法(Contd)有根据的推测决定者多数意见 Delphi 方法 销售人员预测 客户调查 历史类推 市场调查研究科学直觉8/1/20229定量预测方法基于假设:历史会重演过去的分析将会为将来的预测提供基础定量方法:因果法 基于时间序列的方法 8/1/202210定量预测方法定量预测方法-因果模型因果模型因果模型p令Y-需要预测的值X1,X2,Xn:决定Y的n个参数 p即 Y=f(X1,X2,Xn).p最简单的因果模型是线性的:Y=0+1X1+2X2+nXn,其中,i(i=1-n)为常系数p确定这些系数的最常用的方法是最小二乘法8/1/202211假设我们已有n个数据且因果模型为 Y=a+bX.令21(,)()niiig a byabx为极小化g,令0ggab;xyxxSbaybxS22;()nnnnnxyiiiixxiiiiiiiSnx yxySnxx 11;nniiiixxyynn定量预测方法定量预测方法-因果模型因果模型8/1/202212如果所知的数据中,x是自然数(第i 个阶段),即(i,Di),i=1n,则因果模型及计算可简化如下:tDabt2211(1)(1)(21)12.,14.26nniiiin nn nnxnxn 222(1);21)(21(1)64nnxyiiiixxn nSniDDnnnn nS定量预测方法定量预测方法-因果模型因果模型8/1/202213时间序列给出一组与时间顺序相关的数(历史数据)时间序列的分析识别一种模式一旦模式被识别,它可以被用来预测未来时间序列分析8/1/202214时间序列的模式趋势.循环 季节性随机变化8/1/202215符号符号v令 D1,D2,Dt,作为每一个时期1,2,t,的需求v预测Dt,假设已知 D1,Dt-1vFt:根据1,Dt-1 的预测值 v一步预测v事实上,我们需要得到系数11120,mtt nt nttnFD 其中为权L8/1/202216如何评价预测?如何评价预测?一步预测ttteFD多步预测,tttteFD其中,Ft-,t 是提前 个时期预测t 时刻的值v三种常见评价量211niiMSEenMAD:绝对平均差MSE:方差MAPE:绝对平均相对百分差11|niiMADen11|/|100niiiMAPEeDn8/1/202217v理想,E(ei)=0.v预测误差 ei 在0的上下浮动如何评价预测如何评价预测8/1/202218稳定的时间序列预测法稳定的时间序列预测法稳定的时间序列稳定的时间序列:每一阶段的值可表示为ttD其中,=所有序列的平均值=随机量,且期望与方差分别为 0与2.v方法移动平均指数平滑8/1/20221912111()Ntt ittt NiFDDDDNNL11121111111()()NttitttttNt NiNtt Nt ittiNt NFDDDNNDDDFDDNDDDND Lv简化计算,基于Ft 求Ft+1 稳定的时间序列预测法稳定的时间序列预测法8/1/202220预测值稳定的时间序列预测法稳定的时间序列预测法8/1/202221指数平滑指数平滑11(1)tttFDF其中,01 是平滑系数1111111(1)()ttttttttFDFFFDFe第t个时期的预测值是过去一个时期的预测值减去预测误差122(1)tttFDF212210(1)(1).(1)ittttt iiFDDFD 8/1/202222指数平滑指数平滑8/1/202223例:Central Call Center(呼叫中心)Day Calls Day Calls1159720322178195318691884161101685173111986157121598/1/202224例:呼叫中心移动平均AP=3 F13=(168+198+159)/3=175.0 calls8/1/202225例:Central Call Center(呼叫中心)带权移动平均 F13=.1(168)+.3(198)+.6(159)=171.6 calls8/1/202226例:Central Call Center(呼叫中心)8/1/202227预测精度 AP=3 =.25Day Calls Forec.|Error|Forec.|Error|4161187.326.3 186.025.05173188.015.0 179.86.86157173.316.3 178.121.17203163.739.3 172.830.28195177.717.3 180.414.69188185.03.0184.04.010168195.327.3 185.017.011198183.714.3 180.817.212159184.725.7 185.126.1MAD20.518.08/1/202228例:计算机产品销售(CPC).CPC 的分析师想预测下一个年度(Epsilon Computers)的销售销售状况.她相信最近8个季度的销售可以代表下一个年度的销售情况。8/1/202229历史数据年季度($mil.)年季度($mil.)117.4218.3126.5227.4134.9235.41416.1 2418.08/1/202230季节指数计算季节指数 Seasonal Indexes季节指标第i季节平均值/总季节平均值 季度销售年Q1Q2Q3Q4总数17.46.54.916.1 34.928.37.45.418.0 39.1 总量 15.7 13.9 10.3 34.1 74.0 季度平均7.85 6.95 5.15 17.059.25 季节指数.849.751.557 1.8434.0008/1/202231CPC Deseasonalize the Data季节化=i季实际销售/i季指数 季度销售年第1季第2季第3季第4季18.72 8.66 8.80 8.7429.78 9.85 9.69 9.778/1/202232CPC线性回归.线性回归分析Yr.Qtr.xyx2xy1118.7218.721228.66417.321338.80926.401448.741634.962159.782548.902269.853659.102379.694967.832489.776478.16Totals 3674.01 204341.398/1/202233CPC对季节化后的数据进行线性回归分析 Y=8.357+0.199X2204(74.01)36(341.39)a8.3578(204)(36)28(341.39)36(74.01)b0.1998(204)(36)8/1/202234CPC 季节化数据预测 Y9 =8.357+0.199(9)=10.148 Y10 =8.357+0.199(10)=10.347 Y11 =8.357+0.199(11)=10.546 Y12 =8.357+0.199(12)=10.7458/1/202235CPC返回去 季节化预测年 季度指数季节后预测季节预测31.849 10.1488.6232.751 10.3477.7733.557 10.5465.87341.84310.74519.808/1/202236例3:大学入学简单线性回归学校过去六年入学在不断增长,预测未来三年的入学人数学生学生年份 入学人数(1000s)年份 人数(1000s)1 2.543.2 2 2.853.3 3 2.963.48/1/202237简单线性回归(Contd)系数的计算222xy-xxya=nx-(x)22xy-xyb=nx-(x)n 8/1/202238例子:大学入学xyx2xy12.512.522.845.632.998.743.21612.853.32516.563.43620.4 Sx=21 Sy=18.1 Sx2=91 Sxy=66.58/1/202239例子:大学入学 Y=2.387+0.180X291(18.1)21(66.5)2.3876(91)(21)a6(66.5)21(18.1)0.180105b8/1/202240例子:大学入学简单回归Y7=2.387+0.180(7)=3.65 or 3,650 students Y8=2.387+0.180(8)=3.83 or 3,830 studentsY9=2.387+0.180(9)=4.01 or 4,010 studentsNote:渴望每年增长180个学生8/1/202241例4:Railroad Products Co.一个铁路产品的公司想预测公司下三年的销售情况。他想知道自已公司的长期销售情况与运货车箱的车载情况有关。二者过去7年的历史数据见下个ppt.已知下三年的车载情况估计分别为 250,270,and 300 million.8/1/202242例:Railroad Products Co.(Contd)RPC 销售 车载年($millions)(millions)19.5120211.0 135312.0 130412.5 150514.0 170616.0 190718.0 2208/1/202243例:Railroad Products Co.(Contd)xyx2xy1209.514,4001,14013511.0 18,2251,48513012.0 16,9001,56015012.5 22,5001,87517014.0 28,9002,38019016.0 36,1003,04022018.0 48,4003,9601,11593.0 185,42515,4408/1/202244例:Railroad Products Co.(Contd)Y=0.528+0.0801X2185,425(93)1,115(15,440)a0.5287(185,425)(1,115)27(15,440)1,115(93)b0.08017(185,425)(1,115)8/1/202245例:Railroad Products Co.(Contd)Y8 =0.528+0.0801(250)=$20.55 million Y9 =0.528+0.0801(270)=$22.16 millionY10=0.528+0.0801(300)=$24.56 million注:车载每增加一百万吨,RPC 销售则希望增加$80,100.8/1/202246相关系数r,r(x,y)系数表示了x与y关系的重要性.r的符号表示关系的方向.大小表示关系的强度.r符号常常与b的符号一致.r:1,+1.8/1/202247相关系数计算r 可以用下式计算:2222()()nxyxyrnxxnyy 8/1/202248决定系数(r2)r2 比r 对相互关系的描述得更加细致.r2 是由 the ratio of explained variation to total variation确定的。222()()Yyryy8/1/202249例:RPCxyx2xyy21209.514,4001,14090.2513511.0 18,2251,485121.0013012.0 16,9001,560144.0015012.5 22,5001,875156.2517014.0 28,9002,380196.0019016.0 36,1003,040256.0022018.0 48,4003,960324.001,11593.0 185,42515,4401,287.508/1/202250例:RPC相关系数 r =.9829227(15,440)1,115(93)7(185,425)(1,115)7(1,287.5)(93)r8/1/202251例:RPC决定系数Coefficient of Determination r2 =(.9829)2 =.966这说明96.6%关于 RPC sales销售状况的变化可以由车载情况来描述.8/1/2022528/1/2022538/1/202254区间预测8/1/202255区间预测单(点)预测会产生错误面对不确定性,一个较好的方法是预测一个最好的区间值,而真实的数据往往会落入这个区间.预测范围是有置信区间的上下界来确定8/1/202256Ranging Forecasts预测的上下界可以估计为:上界=Y+t(syx)下界=Y-t(syx)这里:Y =最优的估计预测 t =标准方差 syx =预测的标准方差8/1/202257区间预测标准方差:2yxy-ay-bxys=n-28/1/202258例:RPC通过线性回归得到 RPC 第八年的销售值为$20.55 million.设置一个区间,使得产量落到这个区间之外的概率的为5%.8/1/202259例:RPC步骤1,协方差步骤2 确定t的适当值.n=7,自由度=n 2=5.05/2=.025查表可得 t=2.571.1287.5.528(93).0801(15,440).574872yxs8/1/202260例:RPC步骤3 上界=20.55+2.571(.5748)=20.55+1.478=22.028下界=20.55-2.571(.5748)=20.55-1.478=19.072我们 95%相信第 8 年的销售将落在19.072 与$22.028 之内.8/1/202261预测软件 Forecast Pro Autobox SmartForecasts for Windows SAS SPSS SAP POM Software Libary8/1/202262The End8/1/202263演讲完毕,谢谢观看!
展开阅读全文