资源描述
课后限时集训19利用导数解决函数的零点问题建议用时:45分钟1(2019全国卷)已知函数f(x)ln x.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线yln x在点A(x0,ln x0)处的切线也是曲线yex的切线解(1)f(x)的定义域为(0,1)(1,)因为f(x)0,所以f(x)在(0,1),(1,)单调递增因为f(e)10,f(e2)20,所以f(x)在(1,)有唯一零点x1(ex1e2),即f(x1)0.又01,fln x1f(x1)0,故f(x)在(0,1)有唯一零点.综上,f(x)有且仅有两个零点(2)因为eln x0,故点B在曲线yex上由题设知f(x0)0,即ln x0,连接AB,则直线AB的斜率k.曲线yex在点B处切线的斜率是,曲线yln x在点A(x0,ln x0)处切线的斜率也是,所以曲线yln x在点A(x0,ln x0)处的切线也是曲线yex的切线2(2019武汉调研)已知函数f(x)exax1(aR)(e2.718 28是自然对数的底数)(1)求f(x)的单调区间;(2)讨论g(x)f(x)在区间0,1上零点的个数解(1)因为f(x)exax1,所以f(x)exa,当a0时,f(x)0恒成立,所以f(x)的单调递增区间为(,),无单调递减区间;当a0时,令f(x)0,得xln a,令f(x)0,得xln a,所以f(x)的单调递减区间为(,ln a),单调递增区间为(ln a,)(2)令g(x)0,得f(x)0或x,先考虑f(x)在区间0,1上的零点个数,当a1时,f(x)在(0,)上单调递增且f(0)0,所以f(x)在0,1上有一个零点;当ae时,f(x)在(,1)上单调递减,所以f(x)在0,1上有一个零点;当1ae时,f(x)在(0,ln a)上单调递减,在(ln a,1)上单调递增,而f(1)ea1,当ea10,即1ae1时,f(x)在0,1上有两个零点,当ea10,即e1ae时,f(x)在0,1上有一个零点当x时,由f0得a2(1),所以当a1或ae1或a2(1)时,g(x)在0,1上有两个零点;当1ae1且a2(1)时,g(x)在0,1上有三个零点3(2019唐山模拟)已知函数f(x)4axaln x3a22a(a0)(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,当a变化时,求f(x1)f(x2)的最大值解(1)函数f(x)的定义域为x0,对f(x)求导得f(x)x4a,x0,a0.令M(x)x24axa,则16a24a4a(4a1)当0a时,0,M(x)0在(0,)上恒成立,则f(x)0,f(x)在(0,)上单调递增;当a时,0,f(x)0的根为x12a,x22a,由f(x)0得0x2a或x2a;由f(x)0得2ax2a.所以f(x)在(0,2a),(2a,)上单调递增;在(2a,2a)上单调递减(2)由(1)得a,x12a,x22a,所以x1x24a,x1x2a,从而f(x1)f(x2)(xx)4a(x1x2)aln x1x26a24a(x1x2)2x1x210a24aaln aaln a2a23a.令g(a)aln a2a23a,则g(a)ln a4a4.令h(a)ln a4a4,则h(a)4.因为a,所以h(a)0,所以h(a)在上单调递减又h(1)0,所以a时,h(a)0,g(a)0,g(a)在上单调递增;a(1,)时,h(a)0,g(a)0,g(a)在(1,)上单调递减,所以a1时,g(a)取得最大值1.故f(x1)f(x2)的最大值为1.3
展开阅读全文