资源描述
2019-2020年九年级数学教案示例北师大版(I)课时安排1课时从容说课本节在前两节的基础上进一步学习用锐角三角函数解决实际问题,经历把实际问题转化成数学问题的过程,提高应用数学知识解决实际问题的能力因此本节选取了现实生活中的几个题材:船右触礁的危险吗,小明测塔的高度,改变商场楼梯的安全性能等,使学生真正体会到三角函数在解决实际问题中必不可少的重要地位提高了学生学习数学的兴趣.因此,本节的重点是让学生亲历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用,能够将实际问题转化为数学问题,能够借助计算器进行三角函数的计算,并能进一步对结果的意义进行说明,发展数学的应用意识和解决问题的能力教学时,教师可让学生在审清题意的基础上,自己画出示意图,将实际问题转化为数学问题,这是本节课的重点也是难点.同时,让学生对“三角学”的发展史有所了解.第六课时课题1.4船有触礁的危险吗教学目标(一)教学知识点1. 经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用2. 能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气.2选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1. 经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用2. 发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索一一发现法教具准备多媒体演示教学过程I创设问题情境,引入新课师直角三角形就像一个万花筒,为我们展现出了一个色彩斑澜的世界我们在欣赏了它神秘的“勾股”、知道了它的边的关系后,接着又为我们展现了在它的世界中的边角关系,它使我们现实生活中不可能实现的问题,都可迎刃而解它在航海、工程等测量问题中有着广泛应用,例如测旗杆的高度、树的高度、塔高等.F面我们就来看一个问题(多媒体演示).海中有一个小岛A,该岛四周10海里内有暗礁今有货轮由西向东航行,开始在A岛南偏西55的B处,往东行驶20海里后,到达该岛的南偏西25的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.下面就请同学们用锐角三角函数知识解决此问题.(板书:船有触礁的危险吗)II.讲授新课师我们注意到题中有很多方位,在平面图形中,方位是如何规定的?生应该是“上北下南,左西右东”师请同学们根据题意在练习本上画出示意图,然后说明你是怎样画出来的生首先我们可将小岛A确定,货轮B在小岛A的南偏西55的B处,C在B的正东方,且在A南偏东25处示意图如下.师货轮要向正东方向继续行驶,有没有触礁的危险,由谁来决定?生根据题意,小岛四周10海里内有暗礁,那么货轮继续向东航行的方向如果到A的最短距离大于10海里,则无触礁的危险,如果小于10海里则有触礁的危险.A到BC所在直线的最短距离为过A作AD丄BC,D为垂足,即AD的长度我们需根据题意,计算出AD的长度,然后与10海里比较.师这位同学分析得很好,能将实际问题清晰条理地转化成数学问题下面我们就来看AD如何求根据题意,有哪些已知条件呢?生已知BC=20海里,ZBAD=55,ZCAD=25.师在示意图中,有两个直角三角形RtAABD和RtAACD你能在哪一个三角形中求出AD呢?生在RtAACD中,只知道ZCAD=25,不能求AD.生在RtAABD中,知道ZBAD=55,虽然知道BC=20海里,但它不是RtAABD的边,也不能求出AD.师那该如何是好?是不是可以将它们结合起来,站在一个更高的角度考虑?生我发现这两个三角形有联系,AD是它们的公共直角边.而且BC是这两个直角三角形BD与CD的差,即BC=BD-CD.BD、CD的对角是已知的,BD、CD和边AD都有联系.师有何联系呢?生在RtAABD中,tan55=,BD=ADtan55;在RtACD中,tan25=,CD=ADtan25.生利用BC=BD-CD就可以列出关于AD的一元一次方程,即ADtan55-ADtan25=20.师太棒了!没想到方程在这个地方帮了我们的忙其实,在解决数学问题时,很多地方都可以用到方程,因此方程思想是我们初中数学中最重要的数学思想之一.下面我们一起完整地将这个题做完.师生共析解:过A作BC的垂线,交BC于点D.得到RtAABD和RtAACD,从而BD=ADtan55,CD=ADtan25,由BD-CD=BC,又BC=20海里.得ADtan55-ADtan25=20.AD(tan55-tan25)=20,AD=20.79(海里).这样AD20.79海里10海里,所以货轮没有触礁的危险.师接下来,我们再来研究一个问题还记得本章开头小明要测塔的高度吗?现在我们来看他是怎样测的,并根据他得到的数据帮他求出塔的高度.多媒体演示想一想你会更聪明:如图,小明想测量塔CD的高度他在A处仰望塔顶,测得仰角为30,再往塔的方向前进50m至B处.测得仰角为60.那么该塔有多高?(小明的身高忽略不计,结果精确到1m)师我想请一位同学告诉我什么是仰角?在这个图中,30的仰角、60的仰角分别指哪两个角?生当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.30的仰角指ZDAC,60的仰角指ZDBC.师很好!请同学们独立思考解决这个问题的思路,然后回答(教师留给学生充分的思考时间,感觉有困难的学生可给以指导)生首先,我们可以注意到CD是两个直角三角形RtAADC和RtABDC的公共边,在RtADC中,tan30=,即人。=在只七4BDC中,tan60=,即BC=,又VAB=AC-BC=50m,得-=50.解得CD43(m),即塔CD的高度约为43m.生我有一个问题,小明在测角时,小明本身有一个高度,因此在测量CD的高度时应考虑小明的身高.师这位同学能根据实际大胆地提出质疑,很值得赞赏在实际测量时的确应该考虑小明的身高,更准确一点应考虑小明在测量时,眼睛离地面的距离.如果设小明测量时,眼睛离地面的距离为1.6m,其他数据不变,此时塔的高度为多少?你能画出示意图吗?C生示意图如右图所示,由前面的/解答过程可知cc忙血瞥气43m,则CD=43+?1.6=44.6m.即考虑小明的高度,塔的高度为44.6m.师同学们的表现太棒了现在我手里有一个楼梯改造工程问题,想请同学们帮忙解决一下.多媒体演示:某商场准备改善原来楼梯的安全性能,把倾角由40减至35,已知原楼梯长为4m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.0lm)请同学们根据题意,画出示意图,将这个实际问题转化成数学问题,(先独立完成,然=大、.、人宀*右士口、,亠“4后相互交流,讨论各自的想法)生在这个问题中,要注意调整前后的梯楼的高度是一个不变量根据题意可画示意图(如右图)其中AB表示楼梯的高度.AC是原楼梯的长,BC是原楼梯的占地长度;AD是调整后的楼梯的长度,DB是调整后的楼梯的占地长度.ZACB是原楼梯的倾角,ZADB是调整后的楼梯的倾角转化为数学问题即为:如图,AB丄DB,ZACB=40,ZADB=35,AC=4m.求AD-AC及DC的长度.师这位同学把这个实际楼梯调整问题转化成了数学问题大家从示意图中不难看出这个问题是前面问题的变式我相信同学们一定能用计算器辅助很快地解决它,开始吧!生解:由条件可知,在RtAABC中,sin40=,即AB=4sin40m,原楼梯占地长BC=4cos40m.调整后,在RtAADB中,sin35=,则AD=m.楼梯占地长DB=m.调整后楼梯加长AD-AC=-40.48(m),楼梯比原来多占DC=DB-BC=-4cos400.61(m).III.随堂练习1.如图,一灯柱AB被一钢缆CD固定,CD与地面成40夹角,且DB=5m,现再在C点上方2m处加固另一条钢缆ED,那么钢缆ED的长度为多少?解:在RtACBD中,ZCDB=40在RtAEDB中,DB=5m,BE=BC+EC=2+5sin40(m).m,=,BC=DBsin40=5sin40(m).根据勾股定理,得DEKDB2+BE2=曲2+(2+5sin40)27.96(m).所以钢缆ED的长度为7.96m.2如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=8m.坡底DBC=30m,ZADC=135.(1) 求ZABC的大小:(2) 如果坝长100m.那么建筑这个大坝共需多少土石料?(结果精确到0.01m3)解:过A、D分别作AE丄BC,DF丄BC,E、F为垂足.(1)在梯形ABCD中.ZADC=135,.*.ZFDC=45,EF=AD=6m.在RtAFDC中,DC=8m.DF=FC=CD.sin45=4(m).BE=BC-CF-EF=30-4-6=24-4(m).在RtAAEB中,AE=DF=4(m).tanABC=0.308.ZABC17821.(2)梯形ABCD的面积S=(AD+BC)XAE=(6+30)X4=72(m2).坝长为100m,那么建筑这个大坝共需土石料100X7210182.34血).综上所述,ZABC=17821,建筑大坝共需10182.34m3土石料.W.课时小结本节课我们运用三角函数解决了与直角三角形有关的实际问题,提高了我们分析和解决实际问题的能力.其实,我们这一章所学的内容属于“三角学”的范畴请同学们阅读“读一读”了解“三角学”的发展,相信你会对“三角学”更感兴趣.V.课后作业习题1.6第1、2、3题.fid活动与探究(xx年贵州贵阳)如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60方向移动,距台风中心200海里的圆形区域(包括边界)均受到影响.(1) 问:B处是否会受到台风的影响?请说明理由.(2) 为避免受到台风的影响,该船应在多少小时内卸完货物?(供选用数据:1.4,1.7)过程这是一道需借助三角知识解决的应用问题,需抓住问题的本质特征在转化、抽象成数学问题上下功夫.结果(1)过点B作BD丄AC.垂足为D.依题意,得ZBAC=30,在RtAABD中,BD=AB=X20X16=160200,B处会受到台风影响.(2)以点B为圆心,200海里为半径画圆交AC于E、F,由勾股定理可求得DE=120.AD=160.AE=AD-DE=160-120,=3.8(小时).因此,陔船应在3.8小时内卸完货物.板书设计1.4船有触礁的危险吗一、船布触礁的危险吗1根据题意,画出示意图将实际问题转化为数学问题.2. 用三角函数和方程的思想解决关于直角三角形的问题.3. 解释最后的结果.二、测量塔高三、改造楼梯
展开阅读全文