《常微分方程》答案习题.doc

上传人:wux****ua 文档编号:9595985 上传时间:2020-04-06 格式:DOC 页数:4 大小:294.50KB
返回 下载 相关 举报
《常微分方程》答案习题.doc_第1页
第1页 / 共4页
《常微分方程》答案习题.doc_第2页
第2页 / 共4页
《常微分方程》答案习题.doc_第3页
第3页 / 共4页
点击查看更多>>
资源描述
习题3.31Proof若(1)成立则及,使当 时,初值问题 的解满足对一切有, 由解关于初值的对称性,(3,1)的两个解及都过点,由解的存在唯一性,当时故若(2)成立,取定,则,使当 时,对一切有因初值问题的解为,由解对初值的连续依赖性,对以上,使当时对一切有而当时,因故这样证明了对一切有2Proof:因及都在G内连续,从而在G内关于满足局部Lipschitz条件,因此解在它的存在范围内关于是连续的。设由初值和足够小)所确定的方程解分别为,即,于是 因及、连续,因此这里具有性质:当时,;且当时,因此对有即是初值问题的解,在这里看成参数0显然,当时,上述初值问题仍然有解。根据解对初值和参数的连续性定理,知是的连续函数,从而存在而是初值问题的解,不难求解 它显然是的连续函数。3解:这里满足解对初值的可微性定理条件故: 满足的解为 故 4解:这是在(1,0)某领域内满足解对初值可微性定理条件,由公式易见是原方程满足初始条件的解 故
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!