资源描述
第2课时排列的应用学习目标1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数公式解决简单的实际问题知识点排列及其应用1排列数公式A_(n,mN*,mn)_.A_(叫做n的阶乘)另外,我们规定0!_.2应用排列与排列数公式求解实际问题中的计数问题的基本步骤类型一无限制条件的排列问题例1(1)有7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有7种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?反思与感悟典型的排列问题,用排列数计算其排列方法数;若不是排列问题,需用计数原理求其方法种数排列的概念很清楚,要从“n个不同的元素中取出m个元素”即在排列问题中元素不能重复选取,而在用分步计数原理解决的问题中,元素可以重复选取跟踪训练1(1)有5个不同的科研小课题,从中选3个由高二(6)班的3个学习兴趣小组进行研究,每组一个课题,共有多少种不同的安排方法?(2)有5个不同的科研小课题,高二(6)班的3个学习兴趣小组报名参加,每组限报一个课题,共有多少种不同的报名方法?类型二排队问题例23名男生,4名女生,这7个人站成一排在下列情况下,各有多少种不同的站法(1)男、女各站在一起;(2)男生必须排在一起;(3)男生不能排在一起;(4)男生互不相邻,且女生也互不相邻反思与感悟处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素跟踪训练2排一张有5个歌唱节目和4个舞蹈节目的演出节目单(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?例37人站成一排(1)甲必须在乙的左边(不一定相邻),则有多少种不同的排列方法?(2)甲、乙、丙三人自左向右的顺序不变(不一定相邻),则有多少种不同的排列方法?反思与感悟这类问题的解法是采用分类法n个不同元素的全排列有A种排法,m个不同元素的全排列有A种排法因此A种排法中,关于m个元素的不同分法有A类,而且每一分类的排法数是一样的当这m个元素顺序确定时,共有种排法跟踪训练37名师生排成一排照相,其中老师1人,女生2人,男生4人,若4名男生的身高都不等,按从高到低的顺序站,有多少种不同的站法?例4从包括甲、乙两名同学在内的7名同学中选出5名同学排成一列,求解下列问题:(1)甲不在首位的排法有多少种?(2)甲既不在首位,又不在末位的排法有多少种?(3)甲与乙既不在首位又不在末位的排法有多少种?(4)甲不在首位,同时乙不在末位的排法有多少种?反思与感悟“在”与“不在”排列问题解题原则及方法(1)原则:解“在”与“不在”的有限制条件的排列问题时,可以从元素入手也可以从位置入手,原则是谁特殊谁优先(2)方法:从元素入手时,先给特殊元素安排位置,再把其他元素安排在其他位置上,从位置入手时,先安排特殊位置,再安排其他位置提醒:解题时,或从元素考虑,或从位置考虑,都要贯彻到底不能一会考虑元素,一会考虑位置,造成分类、分步混乱,导致解题错误跟踪训练4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法?类型三数字排列问题例5用0,1,2,3,4,5这六个数字可以组成多少个符合下列条件的无重复的数字?(1)六位奇数;(2)个位数字不是5的六位数;(3)不大于4 310的四位偶数反思与感悟数字排列问题是排列问题的重要题型,解题时要着重注意从附加受限制条件入手分析,找出解题的思路常见附加条件有:(1)首位不能为0;(2)有无重复数字;(3)奇偶数;(4)某数的倍数;(5)大于(或小于)某数跟踪训练5用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的(1)能被5整除的五位数;(2)能被3整除的五位数;(3)若所有的六位数按从小到大的顺序组成一个数列an,则240 135是第几项16位选手依次演讲,其中选手甲不排在第一个也不排在最后一个演讲,则不同的演讲次序共有_种23名男生和3名女生排成一排,男生不相邻的排法有_种3用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为_4从6名短跑运动员中选出4人参加4100 m接力赛,甲不能跑第一棒和第四棒,问共有_种参赛方案5用数字0,1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共_个求解排列问题的主要方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反,等价转化的方法答案精析知识梳理知识点1n(n1)(n2)(nm1)n(n1)(n2)21n!1题型探究例1解(1)从7本不同的书中选3本送给3名同学,相当于从7个元素中任取3个元素的一个排列,所以共有A765210(种)不同的送法(2)从7种不同的书中买3本书,这3本书并不要求都不相同,根据分步计数原理,共有777343(种)不同的送法跟踪训练1解(1)从5个不同的课题中选出3个,由兴趣小组进行研究,对应于从5个不同元素中取出3个元素的一个排列,因此不同的安排方法有A54360(种)(2)由题意知3个兴趣小组可能报同一科研课题,因此元素可以重复,不是排列问题由于每个兴趣小组都有5种不同的选择,且3个小组都选择完才算完成这件事,所以由分步计数原理得共有555125(种)报名方法例2解(1)(相邻问题捆绑法)男生必须站在一起,即把3名男生进行全排列,有A种排法,女生必须站在一起,即把4名女生进行全排列,有A种排法,全体男生、女生各看作一个元素全排列有A种排法,由分步计数原理知共有AAA288(种)排法(2)(捆绑法)把所有男生看作一个元素,与4名女生组成5个元素全排列,故有AA720(种)不同的排法(3)(不相邻问题插空法)先排女生有A种排法,把3名男生安排在4名女生隔成的5个空中,有A种排法,故有AA1 440(种)不同的排法(4)先排男生有A种排法让女生插空,有AA144(种)不同的排法跟踪训练2解(1)先排歌唱节目有A种,歌唱节目之间以及两端共有6个空位,从中选4个放入舞蹈节目,共有A种方法,所以任何两个舞蹈节目不相邻的排法有AA43 200(种)方法(2)先排舞蹈节目有A种方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入所以歌唱节目与舞蹈节目间隔排列的排法有AA2 880(种)方法例3解(1)甲在乙前面的排法种数占全体全排列种数的一半,故有2 520(种)不同的排法(2)甲、乙、丙自左向右的顺序保持不变,即甲、乙、丙自左向右顺序的排法种数占全体全排列种数的.故有840(种)不同的排法跟踪训练3解7人全排列中,4名男生不考虑身高顺序的站法有A种,而由高到低有从左到右和从右到左的不同的站法,所以共有2420(种)不同的站法例4解(1)方法一把同学作为研究对象第一类:不含甲,此时只需从甲以外的其他6名同学中取出5名放在5个位置上,有A种第二类:含有甲,甲不在首位:先从4个位置中选出1个放甲,再从甲以外的6名同学中选出4名排在没有甲的位置上,有A种排法根据分步计数原理,含有甲时共有4A种排法由分类计数原理,共有A4A2 160(种)排法方法二把位置作为研究对象第一步,从甲以外的6名同学中选1名排在首位,有A种方法第二步,从占据首位以外的6名同学中选4名排在除首位以外的其他4个位置上,有A种方法由分步计数原理,可得共有AA2 160(种)排法方法三(间接法)即先不考虑限制条件,从7名同学中选出5名进行排列,然后把不满足条件的排列去掉不考虑甲不在首位的要求,总的可能情况有A种;甲在首位的情况有A种,所以符合要求的排法有AA2 160(种)(2)把位置作为研究对象,先满足特殊位置第一步,从甲以外的6名同学中选2名排在首末2个位置上,有A种方法第二步,从未排上的5名同学中选出3名排在中间3个位置上,有A种方法根据分步计数原理,有AA1 800(种)方法(3)把位置作为研究对象第一步,从甲、乙以外的5名同学中选2名排在首末2个位置,有A种方法第二步,从未排上的5名同学中选出3名排在中间3个位置上,有A种方法根据分步计数原理,共有AA1 200(种)方法(4)用间接法总的可能情况是A种,减去甲在首位的A种,再减去乙在末位的A种注意到甲在首位同时乙在末位的情况被减去了两次,所以还需补回一次A种,所以共有A2AA1 860(种)排法跟踪训练4解6门课总的排法是A,其中不符合要求的可分为体育排在第一节,有A种排法;数学排在最后一节,有A种排法,但这两种方法,都包括体育排在第一节,数学排在最后一节,这种情况有A种排法因此符合条件的排法有A2AA504(种)例5解(1)第一步,排个位,有A种排法;第二步,排十万位,有A种排法;第三步,排其他位,有A种排法故共有AAA288(个)六位奇数(2)方法一(直接法)十万位数字的排法因个位上排0与不排0而有所不同,因此需分两类第一类,当个位排0时,有A个;第二类,当个位不排0时,有AAA个故符合题意的六位数共有AAAA504(个)方法二(排除法)0在十万位和5在个位的排列都不对应符合题意的六位数,这两类排列中都含有0在十万位和5在个位的情况故符合题意的六位数共有A2AA504(个)(3)分三种情况,具体如下:当千位上排1,3时,有AAA个当千位上排2时,有AA个当千位上排4时,形如4 02,4 20的各有A个;形如4 1的有AA个;形如4 3的只有4 310和4 302这两个数故共有AAAAA2AAA2110(个)跟踪训练5解(1)个位上的数字必须是0或5.个位上是0,有A个;个位上是5,若不含0,则有A个;若含0,但0不作首位,则0的位置有A种排法,其余各位有A种排法,故共有AAAA216(个)能被5整除的五位数(2)能被3整除的条件是各位数字之和能被3整除,则5个数可能有1,2,3,4,5和0,1,2,4,5两种情况,能够组成的五位数分别有A个和AA个故能被3整除的五位数有AAA216(个)(3)由于是六位数,首位数字不能为0,首位数字为1有A个数,首位数字为2,万位上为0,1,3中的一个,有3A个数,240 135的项数是A3A1193,即240 135是数列的第193项当堂训练14802.1443.724.2405.240
展开阅读全文