外文翻译-长臂开采工作面回采巷道顶板支护的设计方法

上传人:机械****计 文档编号:606336 上传时间:2019-07-09 格式:DOC 页数:26 大小:664.12KB
返回 下载 相关 举报
外文翻译-长臂开采工作面回采巷道顶板支护的设计方法_第1页
第1页 / 共26页
外文翻译-长臂开采工作面回采巷道顶板支护的设计方法_第2页
第2页 / 共26页
外文翻译-长臂开采工作面回采巷道顶板支护的设计方法_第3页
第3页 / 共26页
点击查看更多>>
资源描述
英文原文A method for the design of longwall gateroad roof supportW.Lawrence Geowork Engineering,Emerald,QLD,AustraliaAbstract:A longwall gateroad roof support design method for roadway development and panel extraction is demonstrated. It is a hybrid numerical and empirical method called gateroad roof support model(GRSM), where specification of roof support comes from charts or equations. GRSM defines suggested roof support densities by linking a rock-mass classification with an index of mining-induced stress, using a large empirical database of Bowen Basin mining experience. Inherent in the development of GRSM is a rock-mass classification scheme applicable to coal measure strata. Coal mine roof rating(CMRR)is an established and robust coal industry standard, while the geological strength index(GSI)may also be used to determine rock-mass geomechanical properties.An elastic three-dimensional numerical model was established to calculate an index of mining induced stress, for both roadway development and longwall retreat. Equations to calculate stress index derived from the numerical modelling have been developed. An industry standard method of quantifying roof support is adopted as a base template(GRSUP).The statistical analyses indicated that an improved quantification of installed support can be gained by simple modifications to the standard formulation of GRSUP. The position of the mathematically determined stable/failed boundary in the design charts can be changed depending on design criteria and specified risk.Keywords: Coal mine;Roof control ;Support Design1. IntroductionLongwall gateroad strata stability is essential to ensure uninterrupted production. In Central Queenslands Bowen Basin, immediate gateroad roof lithology varies from coal to weak interlaminated material, to strong almost massive sandstone, with localised areas of weak fault affected strata. It is usual for roof conditions within any one mine to vary significantly. Typically, longwall mines in the Bowen Basin have specified gateroad roof support based on past practice. Modifications to gateroad support are generally reactive, due to encountered difficult strata conditions, and less proactive. Current gateroad support design approaches have limitations, which have restricted their applicability and adoption as mine site design tools.A prototype for an improved gateroad support design methodology has been developed that is integrated and systematic, based on rock engineering principals, but requires engineering judgement and experience 1. There were several broad objectives for the design methodology. A consistent and unambiguous definition of strata conditions and behaviour was required. Gateroad roof support needed to be assessed and specified. The method had to provide design calculations and justification for compliance and statutory purposes, and could serve as a frame work for a mine strata management system. Mine site support designers must be able to readily use the method to manage uncertainty and risk. The method must be able to be reviewed, modified and expanded.2. Current roof support design methods for longwall gateroadsNumerous roof support design methods have been proposed over the years, but none have gained widespread acceptance by the coal mining industry 2. There are empirical databases, some proprietary, based on industry practice, which specify gateroad primary and secondary support densities, using a statistical approach 3,4. Analytical methods are not appropriate when rock-mass yield due to high mining induced stresses occurs, but may be applicable and adapted to low stress environments 5. The application of complex post-yield numerical modelling in the design process for excavation support is valid although contentious, and requires a more comprehensive justification and better industry understanding of its strength and limitations 6. The complete mathematical representation of rock-mass properties and behaviour is a complex issue, which is still outside the capability of current numerical modelling code 6.Engineers and mathematicians do not have the current capability to fully define rock-mass geomechanical properties and their mathematical representation. Elasticplastic numerical modelling is a useful tool if used appropriately. It is not exclusively correct or unique, or always superior to other available and accepted design techniques. These aspects have been recognised during recent collaborative Australian Coal Association Research Program research on longwall microseismics 7, where it was considered that current 3D numerical models lack sufficient validated constitutive relationships, and are forced to make compromises when dealing with complex rock-mass behaviour.Simplified elastic numerical methods 8,9 have merit and are certainly applicable for more massive sedimentary rock-masses 5. An assessment of their applicability to weaker, laminated clastic rock-masses is required. Hybrid numerical and empirical methods have been developed for the geotechnical design of undercut and production level drifts of block caving mines 10.3. Geotechnical roof classification of longwall gateroadsTwo classification schemes were considered appropriate. Firstly, the coal mine roof rating (CMRR) 11, which is an established coal industry standard. Secondly, the Geological Strength Index, GSI with strength parameters included 12. A recent publication 13 has contended that GSI estimates of rock-mass strength should not be used for coal mine roof problems, where the geometrical scale of the problem is similar to discontinuity spacing. A distinction needs to be made between the GSI classification and the related HoekBrown failure criterion. This scale effect and situations where the failure criterion should not be used have been discussed 14 However, this does not mean that a classification of the rock-mass cannot be made. Indeed, this scale issue is a problem inherent in any rock- mass classification scheme, not just GSI, and for any failure criterion. For example, some mines appropriately use unconfined compressive strength (UCS) as an index or failure criterion, but UCS is also scale dependent and has the same limitations.Within the support design methodology, the rock-mass classification schemes will link mining-induced stresses (or stress index) and required installed roof support. Therefore, the classifications should be independent of environmental and geometrical factors, such as mining induced stresses and excavation orientation and size. A rock-mass classification scheme must also provide rock-mass geomechanical properties to enable the calculation of mining induced stresses.It is anticipated that CMRR will be the principal classification scheme used. However, the single rock-mass classification scheme that is best suited is the GSI derived global rock-mass strength. For numerical or analytical models, HoekBrown failure criterion parameters, modulus of deformation and rock-mass strength can be estimated from GSI 15,16.Direct utilisation of either CMRR or GSI is included within the design methodology.4. An index of mining induced stressAn index of mining induced stress in the gateroad roof at a location of interest is required. The three-dimensional (3D) stress distribution about a longwall panel including goaf reconsolidation, and the continuous stress redistribution that occurs during panel retreat, is a complex and difficult phenomena to quantify. One approach would be to construct a full elasticplastic, 3D numerical model. This approach would have limitations to a verified, unique and readily achieved calculation of stress, for several reasons. Generalised model roadway and goaf geometry may not always match the actual geometry. Generalised model roof lithology may not always match the actual lithology and variations. The roof/seam/floor interaction is a complex system and is difficult to model accurately. Rock-mass geomechanical properties, in particular post-yield cannot be fully defined. The geomechanical properties of the goaf, extent and behaviour of strata fracturing and caving, and goaf stress reconsolidation are largely unknown. The model may take many days to complete just a single scenario.While calculated mining induced stress from a detailed elasticplastic, 3D numerical model may be an appropriate parameter, there is little justification to improved accuracy compared to other methods. An alternative approach is to calculate mining induced stress from elastic 3D numerical models. Calculated mining induced stress in the immediate gateroad roof just outbye of the face-line may not be accurate if rock-mass yield occurs, but as an index of stress, it may be appropriate. An important criterion of its suitability would be how reasonable its relative variation is with changes in input parameters. A significant advantage is that it could be readily calculated for variable scenarios and would be within the range of capability of more geotechnical engineers.Maximum elastic tangential stress in the roof of a modelled gateroad could be considered a better indicator of rock-mass failure than the residual post-yield stress. Undoubtedly, significant rock-mass failure and subsequent stress redistribution do occur, which are not reflected in an elastic model. In the immediate roof of the gateroad, these failures are initiated at a critical mining induced stress. The stress index is a reasonable and appropriate measure of this critical stress, even if it may not agree in absolute magnitude after stress redistribution occurs. For mining induced stresses from an elastic 3D numerical model to be a reasonable representation, several issues influencing the stress distribution must be considered, which include strata fracturing and caving and goaf reconsolidation.For bulking-controlled caving, empirical relationships are used to predict the height of caving (goaf) and fracturing 17:(m ) (1)(m ) (2)where Hc is the caving(goaf) height above top fextracted horizon, Hf is the thickness of the fractured zone above top of caving zone, h is extraction thickness,and c1, c2, c3, c4, c5 and c6 are coefficients depending on lithology (Table1 ).Table 1 Coefficients for average height of caving zone 17Coefficients /mLithology Compressive strength/MPa C1 C2 C3 C4 C5 C6Strong and hard 40 2.1 16 2.5 1.2 2.0 8.93120ChHc645fchMedium strong 20-40 4.7 19 2.2 1.6 3.6 5.6Soft and weak 40 2.1 16 2.5 1.2 2.0 8.9中等坚硬 20-40 4.7 19 2.2 1.6 3.6 5.6软弱 20 6.2 32 1.5 3.1 5.0 4.0风化的 - 7.0 63 1.2 5.0 8.0 3.03120ChHc645fc通过下式可以确定采空区的应力应变:(MPa) (3)式中 和 分别是采空区的垂直应力和垂直应变,E 0 是初始正切模量, m 是采空区岩层可能的最大变形量,通过碎胀系数计算变形量,计算公式如下:(4)通过岩石抗压强度 c 和碎胀系数 BF 计算初始正切模量 E0,计算公式如下:(MPa) (5) 应用双倍屈服三维本构模型通过单轴压缩模拟应变钢化材料的剪切和拉伸破坏。作为弹性应变,正切模量的最大值是通过不断加载来确定的。为了得到抗剪强度和抗拉强度必须确定变形体积。表面体积通过表面应力 pc 计算,它与采空区垂直应力 v 不同与弹性应变 pv 有关。把 1m1m 的试件作为测试模型,通过对其反复压缩得到两者之间的关系。加载过程中对有固定侧和底座的试件进行快速填充。制定的公式是以采空区变形和岩石强度为基础,利用 EXCEL软件反复进行衰减实验分析得到的。具体参数见表 2.Table 2 采空区变形三维数值模拟参数1 最大正切模量 230 MPa2 泊松比 0.303 密度 1.7 gm/cc4 内聚力 0.001 MPa5 内摩擦角 256 扩容 27 抗拉强度 0 MPa8 弹性应变 330.481.97.80.49ccpeBFTable 3 三维数值模拟力学参数1 参数 Range Unitage2 巷道高度 2-3.4 m3 巷道宽度 4.8-6.5 m4 工作面 200-300 m5 煤柱宽度 15-45 m6 埋深 60-330 m7 直接顶等级 8-62 MPa8 水平应力与垂直应力之比 1.22 -9 岩体刚度 -10 泊松比 岩石 0.25,煤 0.3 -基于声发射原理有多种采空区变形的理论,根据不同的理论公式得到多种01(/)mE1mBF1.0420739cEBF(10)/4(1)2GSIcimDE结果。由于采空区应力没有确定,任何一种结果的正确性都不得而知。采空区应力是最重要的参数,利用采空区应力应变计算应力除此之外,对力学参数的理解也很重要。三维弹性数值模型简化模拟了长臂工作面,顶底板岩层是复杂的连续统一体,通过模型模拟了煤层与顶底板之间的联系。图 1 典型三维几何模型-整体模型图 2 典型三维几何模型-沿煤层顶部的截面对煤层和顶底板进行连续模拟,煤柱设计必须准确而且尺寸应适应地层条件,煤柱才能稳定。一系列的工程地质几何参数必须通过资料库精确确定,参数设置见表 3。岩石力学参数应取自于地应力参数。三维几何模型如图 1 和图2,图中煤层厚度为 3m 顶底板厚度均为 2m,沿采空区中心线划分。应力数值来自更加坚硬的岩层。不同岩性岩层的水平应力较难确定,软弱岩层与煤层中应力数值更难确定。可以根据岩性与岩石等级确定一个应力范围。假设岩石力学参数与弹性模量之间存在一种关系,这种方法存在局限性。应力参数就是采煤工作面直接顶采动应力参数,三维模型显示了工作面正在回采的状态,水平显示了煤层顶板情况。主应力既可能是水平应力(回采巷道直接顶)也可能是垂直应力(煤柱和工作面) ,在这种情况下,根据 GRSM 分类表确定应力数值为 31MPa。根据这种方法在支护设计中,应力的变化并不是最重要的影响因素,这种参数的变化是合理的。在数值模拟是水平应力是必须要考虑的,它将会引起采动应力叠加。5 顶板支护煤炭行业广泛应用的支护等级标准是 GRSUP(地下工程支护等级标准) ,公式计算如下:(kN/m ) (6)式中 Lb 是锚杆水平锚固长度, Nb是巷道断面平均锚杆数目, Cb是锚杆的有效锚固力,S b是锚杆的平均间距,N t巷道断面的平均锚索数目,C t是锚索的有效锚固力,S t锚索的平均间距, w 是巷道宽度,14.6 是一个固定参数,来源于NIOSH 提举公式,该公式中参数最初是英制的,需转换成能应用标准公式与所有美国资料相兼容的国际单位制。6 数据数据取自于鲍文盆地煤田地下开采实践,无效的数据并不受顶板垮落条件的限制,任何支护不完善的条件下取得的数据都被视为无效数据。这些条件包括顶板垮落、缺少保证地层稳定的足够支护以及一些发生过严重变形的区域。280 个数据点中就有 106 个是无效的,其中包括一系列的地层条件,深度范围是从 60 到 330 m,顶板条件呈现出不同的变化,从软弱的夹层到坚硬的砂岩也有厚煤层。砂岩顶板中存在高水平应力,煤层顶板中则是低水平应力,支护密度从在坚硬顶板条件下的四锚杆基础支护到在软弱或者岩层受到破坏的顶板条件下的更多锚杆的密集支护。长臂工作面回采巷道发展过程中收集到 166 个数据点(60 个无效,106 个有效) ,开拓巷道方面有 24 个数据点(9 个无效,15 个有效) ,硐室和联络巷有 7 个数据点(3 个无效,4 个有效) ,平巷采用锚杆支护的工作面回采方面有 83 个数据点(34 个无效,49 个有效) 。7 设计方法7.1 引言这种设计方法主要针对巷道发展和长臂工作面回采巷道支护,包括开拓巷14.6.bbtLGRSUPS道、回采巷道还有回采工作面。硐室和联络巷的顶板支护也在考虑范围之内。评价顶板支护采用 GRSM 模型和其他一些设计步骤,先对顶板条件进行特征分析然后进行应力计算。确定最小的支护等级,最后提出两种主要的支护形式也要考虑到 GRSM 模型中未涉及到的因素。7.2 岩石特征分析需要对 2 m 的直接顶岩层进行等级划分,如果还要考虑回采工作面,则需要对 4 m 的直接顶岩层进行等级划分,最有代表性的是大部分初学者需要计算应力通过 CMRR 分类表中的数据,也可能利用更加全面的岩体强度 GSI 分类表。通过分类表准确的计算岩体强度而不是过高的估算这一点很重要,尤其在计算岩芯的强度时。岩层中的地下开采要考虑水平应力,在处理岩芯时很容易忽略掉在岩芯中不经常出现的节理结构和残留在岩芯中的完整的层理结构的影响。同样,完整的岩体强度不应被过高估算,特别在利用地球物理学进行分析计算时。7.3 应力参数为了能够有效的使用 GRSM 模型,在不借助三维数值模拟的情况下快速准确的进行应力计算是很重要的,发展应用于巷道和回采工作面的应力计算是同样重要的。通过 Microsoft Excel 电子表进行一系列的分析得出能够对应力进行重复三维数值模拟计算的公式,在不同的条件下应力计算的结果是不相同的,GRSM 模型发展的这一阶段过程中没有任何的指导经验可以借鉴。回采巷道的采动应力与工作面采动应力不同,在采空区垮落稳定以前工作面采动应力就会显现,随工作面采煤进行将会产生更高的采动应力,在工作面端头采动应力可能会增加。有 197 个回采巷道的数据点和 78 个回采工作面的数据点,带入表 4 中的参数和常数用公式 7 计算回采巷道的应力,带入表 5 中的参数和常数用公式 8 计算回采工作的应力,公式 7 和 8 之间存在 0.99 的平方倍的关系。(MPa ) 21212()()DEVSIabxbx(7)(MPa ) 21212()()LRIcdydy(8)图 4 巷道支护的应力计算公式中输入的参数和常熟常 数- CMRR GSI参 数 设 置a -7.66 -7.43X1 2 m 的直接顶 (CMRR 或 GSI 岩体强度) b1 0.033 0.0086X2 巷道或掘进高度( m) b2 0.227 0.227X3 巷道或掘进宽度( m) b3 0.0013 0.0041X4 埋深( m) b4 0.00677 0.00681X5 区段煤柱宽度( m) b5 -0.0013 -0.0013X6 2 m 直接顶中水平应力与垂直应力之比 b6 0.767 0.772X7 1+sin(): 巷道方向与水平应力的夹角, 0and 180 b7 0.280 0.282图 5 回采工作面的应力计算公式中输入的参数和常熟常 数- CMRR GSI参 数 设 置c -22.40 -22.10y1 2 m 的直接顶 (CMRR 或 GSI 岩体强度) d1 0.797 0.168y2 4 m 的直接顶 (CMRR 或 GSI 岩体强度) d2 -1.046 -0.150y3 巷道或掘进高度( m) d3 0.817 0.749y4 巷道或掘进宽度( m) d4 -0.406 -0.215y5 埋深( m) d5 0.0108 0.0101y6 区段煤柱宽度( m) d6 -0.0129 -0.0098y7 长臂工作面宽度( m) d7 -0.00021 0.00057y8 2 m 直接顶中水平应力与垂直应力之比 d8 0.686 0.690y9 4 m 直接顶中水平应力与垂直应力之比 d9 1.553 0.953y10 1+sin( -): 巷道方向与水平应力的夹角,顺时针方向, 为 20,0 (- ) 180 d10 0.674 0.637SIDEV 是回采巷道的应力,S ILR 是回采工作面的应力,x 1, x2, y1, y2是单独输入的参数,a,b 1,b2,c,d1,d2是常数。从公式 7 和 8 中都可以看出,有些参数对应力的结果几乎没有影响,例如煤柱和工作面宽度。显而易见,在计算工作面端头应力而不是邻近巷道应力时,不用考虑因上部岩层垮落和煤层开采而产生的变形。回采巷道宽度对于巷道应力计算没有影响但对工作面应力计算则不然。对等式最优化的结果是 1+sin(-) 。这说明当巷道方向与水平应力方向平行时,此时采动应力也不是最小值,20是测量和计算误差,平方和的最小值。这个通过数值模拟和应力计算得到的结果是可以接受的。7.4 设计图表在进行计算时采用包含两个未知数的回归方程是关键,由 MATLAB 软件得出的最大可能函数确定回归方程的各项参数,通过回归分析得到角度,通过分布函数把分类误差降低到最小值得到边界范围。利用所有的数据点才能确定 30.1.exp(/40.82).7CMRSIGRSUP所有的设计图表和等式,回归分析可以确定岩体等级、应力数值和支护等级。最初的边界范围是通过平衡数据点的上下边界得到的。然而,临界值可能因为设计规范和随时可能出现的危险情况发生改变,随着数据点错误分配的减少提高了计算结果的正确性。数据点错误的概率是 0.1,因此,应根据资料库里的数据进行设计而不是采用正确率可能超过 0.9 的计算结果进行设计。传统设计是根据分别采用 CMRR 或 GSI 强度分类表计算得到的正确率为 0.85 或 0.8 的计算结果,这种准确性符合顶板垮落数据点的正确分配,根据 GRSUP 支护等级可以进行如下计算:(kN/m) 30.1.exp(/40.82).7CMRSIGRSUP(9)(kN/m ) (10)式中 GGRS 与 GSI 岩体强度相等,SI 是应力,可以根据 GRSUP 支护等级选择图 4 和图 5 中两种设计图表中的一种。回归分析表明,可以通过修改标准的GRSUP 支护等级计算公式来取得更好的支护效果,可以主观确定需要的基础支护,通过计算得到锚杆的平均间距。(kN/m ) (11)NBe 是有效的基础支护的锚固力,S Bav 是锚杆的平均间距,超出资料库数据范围的实验数据可能不可靠,不应该盲目推断。资料库数据研究表明数据范围是足够的,在低应力时数据临界值通常更可靠。然而,高应力时的数据临界值不能准确的确定,这是回归分析时经常会犯的错误。 岩 体 强 度 分 级 (GSI强 度 ,MPa)012345612034506 1 GRSUP 20436 85SP12065432应 力1.45297.80.1SIGRSUP14.6.bBebtavLNCGRUPSw图 3 采用 CMRR 强度分级的回采巷道支护设计图表 1 GRSUP 20436 85543216岩 体 强 度 分 级 (CMR)应 力 030354001230456025图 4 采用 GSI 强度分级的回采巷道支护设计图表资料库中的数据也有缺陷,需要更多的回采工作面高应力时的数据点,同时也缺少埋深超过 250 m 的数据点,资料库中尤其缺少埋深超过 300 m 时的数据点。鲍文盆地地下开采实践资料库中埋深超过 300 m 的数据非常有限,也需要在软弱顶板条件下(CMRR 强度35MPa )的回采工作面的数据,尤其需要任何埋深条件下以及 CMRR 强度在 30 40MPa 之间的无效数据。7.5 支护体系评估应用 GRSUP 支护等级对回采巷道支护进行评估,并且不受地质构造的影响。通常工作面端头、高应力的回采巷道以及受地质构造影响的区域应该加强支护,在确定锚杆间距时,最好让锚杆的间排距近似相等。如果在同一排中锚杆间距发生变化,表明该支护密度区域的锚杆支护参数是合理的,其中包括锚杆间距大的区域和双锚杆成对布置的区域。在回归分析计算和 GRSUP 支护等级计算公式中不考虑锚索的长度,不需要根据顶板岩性和分层厚度来确定锚索长度。GRSUP 支护等级评估表明锚索最终的有效支护长度取决于注浆或者装药长度,更低等级的锚杆应用于一些特殊条件。对锚索的预紧力没有进行评估,假设锚杆的预紧力与煤炭工业标准一致。在支护基础上,把完整顶板条件下的锚杆支护作为一个体系。软弱或节理岩层、煤层、破碎顶板闭合交错节理岩层要单独考虑,这种条件下需要合适的顶梁、金属网和钢带,还必须用锚索。需要确定锚索的中心线,这时候锚索只有在注浆或者巷帮发生剪切的时候才会起作用。8 结论最初的回采巷道支护模型(GREM 模型)表明这种方法可以作为一种设计工具,该模型能够提供回采巷道和工作面端头巷道的支护设计,可以适用于包括顶板为煤层条件下的一系列顶板条件。该方法简单易懂、可以在电子表格中使用。虽然是首次用 GRSUP 支护等级进行评估,不过还会随时接受评估,以确保能够根据实际情况和实践经验进行最优设计。在 GRSM 模型发展过程中不要妄下断论,为 GRSM 模型未来的发展留有空间。致谢感谢澳大利亚煤炭协会研究计划研究基金对研究开发工作的支持。参考文献1 Lawrence W,长臂工作面顶板支护设计方法;PhD thesis, Julius Kruttschnitt 矿物研究中心,昆士兰大学;2008 年;2 Mark C,顶板锚杆体系设计 ;会议记录,煤矿顶板支护会议,Info Circular 9453, 美国职业安全与健康研究院; 2000 年,p31111;3 Colwell M, Hill D, Frith R,ALTS II-澳大利亚煤矿长臂工作面回采巷道支护设计,In:Hebblewhite BK, editor.会议记录,澳大利亚第一次采矿地面控制会议,悉尼,2003 年 11 月 1013 日,p35123;4 Mark C,Molinda GM,Dolinar DR,顶板锚杆支护体系分析;会议记录,20 世纪国际采矿地面控制会议,摩根城,西弗吉尼亚州,美国,2001 年 8 月 79 日 August 2001,p21825;5 Pells PJN.悉尼地区岩石巷道和硐室设计发展;国际岩石力学与工程学报2002 年;39 期:p569-87;6 Jing L,岩石力学与工程数值模拟方法;国际岩石力学与工程学报 2003 年;40 期,p283353. 7 Kelly M. 3D,长臂开采地质条件,澳洲煤炭期刊, 2000 年 4 月,p2025;8 Stacey TR,破碎岩石应变扩张,国际岩石力学与工程学报,2000 年 4 月 p46974. 9 Martin CD, Kaiser PK, McCreath DR,鲍文盆地巷道巷道变形参数预计,Can Geotech J 1999;36(1):13651; 10 Trueman R, Pierce M, Wattimena RK,崩落采矿法应力与支护定量方法, 国际岩石力学与工程学报 2002 年 39 期,p617-32。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸设计 > 毕设全套


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!