资源描述
2.1认识无理数第2课时 关注“初中教师园地”公众号2019秋季各科最新备课资料陆续推送中快快告诉你身边的小伙伴们吧教学目标【知识与能力】掌握无理数的概念;能用所学定义正确判断所给数的属性.【过程与方法】借助计算器探索无理数是无限不循环小数,从中体会无限逼近的思想.【情感态度价值观】在掌握估算方法的过程中,发展学生的数感和估算能力.教学重难点【教学重点】能用所学定义正确判断所给数的属性.【教学难点】 无理数概念的建立.教学准备计算器、立方体、多媒体课件.教学过程第一环节:情境引入导入:前面我们学习了有理数,有理数是如何分类的呢?1.有理数是如何分类的?【问题解决】有理数整数(如-1,0,2,3,)分数如13,-25,911,0.5,2.除上面的数以外,我们还学习过哪些不同的数? 如圆周率,0.020020002上节课又了解到一些数,如a2=2,b2=5中的a,b不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.设计意图通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它们的真面目.第二环节:新知构建过渡语上一节我们已经感受到数不够用了,下面我们继续探索用什么数来表示.1.数的小数表示面积为2的正方形的边长a究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器进行探索.(3)小明将他的探索过程整理如下,你的结果呢?边长a面积S1a21S41.4a1.51.96S2.251.41a1.421.9881S2.01641.414a1.4151.999396S2.0022251.4142a1.41431.99996164S2.00024449【思考】a的范围在哪两个数之间?左面的边长中,前面的数值和后面的数值相比,哪个更接近正方形的实际边长?【归纳总结】a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356,它是一个无限不循环小数.【做一做】(1)请大家用上面的方法估计面积为5的正方形的边长b的值(结果精确到0.1),并用计算器验证你的估计.(2)如果结果精确到0.01呢?(提示:精确到0.1,b2.2,精确到0.01,b2.24)同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.25992105,它也是一个无限不循环小数. 设计意图让学生有充分的时间进行思考和交流,逐渐缩小范围,借助计算器探索出a=1.41421356,b=2.2360679,c=1.25992105是无限不循环小数的过程,体会无限逼近的思想.2.有理数的小数表示,明确无理数的概念思路一:请同学们以学习小组的形式活动.【议一议】把下列各数表示成小数,你发现了什么?3,45,59,-845,211.【答案】3=3.0,45=0.8,59=0.5,-845=-0.17,211=0.18.分数化成小数,最终此小数的形式有哪几种情况?思路二:回忆小学我们学过的计算圆的周长和面积的时候,用到的取多少?(3.14)它是确切的值吗?(不是,是近似值)那是有理数吗?(不是)并且,我们还知道,利用计算机,现在已经算到几亿分位,但是还是没有算出来.当然,也不能化为分数的形式,所以不是有理数,那是什么数呢?【探究结论】分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.【强调】像0.585885888588885,1.41421356,-2.2360679等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率=3.14159265也是一个无限不循环小数,故是无理数)【想一想】你能找到其他的无理数吗?设计意图通过学生的活动与探究,得出无理数的概念,通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必要性,建立了无理数的概念.3.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,-43, 0.57,0.1010001000001(相邻两个1之间0的个数逐次加2).解:有理数有:3.14,-43,0.57;无理数有:0.1010001000001(相邻两个1之间0的个数逐次加2).【强调】1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数pq的形式(q0,p,q为整数且互质),而无理数不能.设计意图通过例题的讲解,让学生充分理解无理数、有理数的概念、区别,感受数的分类.知识拓展确定x2=a(a0)中正数x的近似值的方法:1.确定正数x的整数部分.根据平方的定义,把x夹在两个连续的正整数之间,确定其整数部分.例如:求x2=5中的正数x的整数部分,因为22532,即22x232,所以2x5,所以x的十分位上的数字一定比3小,不妨设x2.2.(2)设误差为k(k必为一个纯小数,且k可能为负数),则x=2.2+k,所以(2.2+k)2=5,所以4.84+4.4k+k2=5,因为k是小数,所以k2很小,把它舍去,所以4.84+4.4k=5,所以k0.036,所以x=2.2+k2.2+0.036=2.236.实际估算中,整数部分的数字容易估计,十分位上的数字也可以采用试验的方法进行估计,即2.12=4.41,2.22=4.84,2.32=5.29,因为4.8455.29,所以2.22x22.32,所以2.2x2.3,所以十分位上的数字为2.第三环节:课堂小结数有理数:有限小数或无限循环小数整数分数无理数:无限不循环小数第四环节:检测反馈1.下列说法中正确的是()A.无限小数都是无理数B.有限小数是无理数C.无理数都是无限小数D.有理数是有限小数答案:C2.以下各正方形的边长是无理数的是()A.面积为25的正方形B.面积为425的正方形C.面积为8的正方形D.面积为1.44的正方形解析:52=25,252=425,(1.2)2=1.44.故选C.3.一个直角三角形两条直角边的长分别是3和5,则斜边长a是有理数吗? 解:由勾股定理得: a2=32+52,即a2=34.因为不存在有理数的平方等于34,所以a不是有理数.4.已知-34,5,-1.42,3.1416,23,0,42,(-1)2n ,-1.4242242224(相邻两个4之间2的个数逐次加1).(1)写出所有有理数;(2)写出所有无理数.解:(1)有理数:-34,5,-1.42,3.1416,23,0,42,(-1)2n .(2)无理数:,-1.4242242224(相邻两个4之间2的个数逐次加1).第五环节:布置作业1.教材作业【必做题】教材随堂练习.【选做题】教材习题2.2第2,4题.2.课后作业【基础巩固】1.面积为3的正方形的边长为x,则x()A.1x2B.2x3 C.3x4 D.4x52.一个正三角形的边长是4,高为h,则h是()A.整数 B.分数 C.有限小数 D.无理数【能力提升】3.在直角三角形中,若两条直角边的长分别是2和3,则斜边长的平方是,则斜边长是数.【拓展探究】4.设半径为a的圆的面积为20 .(1)a是有理数吗?说说你的理由;(2)估计a的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?5.在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算: (1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?【答案与解析】1.A(解析:12=1,22=4.)2.D(解析:由勾股定理,得h2=42-22=12,没有整数或分数的平方等于12,所以h为无理数.)3.13无理(解析:由勾股定理,可得斜边的平方为13,没有整数或分数的平方为13,所以是无理数.)4.解:(1)a2=20,a2=20.a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.(2)a4.5.(3)a4.47.5.解析:1.72=2.89,1.73=2.9929.解:(1)1.7米.(2)1.73米.板书设计2.1.2认识无理数1.数的小数表示.2.有理数的小数表示,明确无理数的概念.3.例题讲解.教学设计反思成功之处本节课借助寻找正方形边长这一“现实生活中的实例”,让学生通过估算、借助计算器进行探索、讨论等途径,体会数学学习的乐趣,体会无限逼近的数学思想,得到无理数的概念.不足之处对基础较薄弱的学生和班级,这一探索过程所需时间较长,会影响后面环节的进行. 再教设计知识分类整理环节,学生自主整理和接受会有一定困难,若学生学习例题后再进行知识分类整理可能会更好.感知过程是学生理解无理数这一抽象概念所必需的,所以绝对不能淡化.- 6 -
展开阅读全文