资源描述
xx中考数学专题复习题:概率一、选择题1. 在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟实验来验证取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值上面的实验中,合理的有()A. 0个B. 1个C. 2个D. 3个2. 已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A. 20B. 30C. 40D. 503. 小明做“用频率估计概率”的实验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是()A. 同时抛掷两枚硬币,落地后两枚硬币正面都朝上B. 一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C. 抛一个质地均匀的正方体骰子,朝上的面点数是3D. 一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球4. 下列事件中是必然事件的是()A. 明天太阳从西边升起B. 篮球队员在罚球线上投篮一次,未投中C. 抛出一枚硬币,落地后正面朝上D. 实心铁球投入水中会沉入水底5. 不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球6. 下列说法中不正确的是()A. 函数y=2(x1)21的一次项系数是4B. “明天降雨的概率是50%”表示明天有半天都在降雨C. 若a为实数,则|a|0是不可能事件D. 一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同),如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是67. 三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A. 13B. 23C. 16D. 198. 把八个完全相同的小球平分为两组,每组中每个分别协商1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=x+5上的概率是()A. 12B. 14C. 13D. 169. 下列算式9=3;(13)2=9;2623=4;(2016)2=2016;a+a=a2运算结果正确的概率是()A. 15B. 25C. 35D. 4510. 向如图所示的地砖上随机地掷一个小球,当小球停下时,最终停在地砖上阴影部分的概率是()A. 13B. 12C. 34D. 23二、填空题11. 一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是_ 12. 已知四个点的坐标分别是(1,1),(2,2),(23,32),(5,15),从中随机选取一个点,在反比例函数y=1x图象上的概率是_13. 有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为_ 14. 如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是_ 15. 下列事件:过三角形的三个顶点可以作一个圆;检验员从被检查的产品中抽取一件,就是合格品;度量五边形的内角和,结果是540;测得某天的最高气温是100;掷一枚骰子,向上一面的数字是3,其中必然事件的有_ ,随机事件的有_ .(只填序号)16. 我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率进行估计,用计算机随机产生m个有序数对(x,y)(x,y是实数,且0x1,0y1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计的值为_ .(用含m,n的式子表示)17. 为了估计一个不透明的袋子中白球的数量(袋中只有白球),现将5个红球放进去(这些球除颜色外均相同)随机摸出一个球记下颜色后放回(每次摸球前先将袋中的球摇匀),通过多次重复摸球试验后,发现摸到红球的频率稳定于0.2,由此可估计袋中白球的个数大约为_18. 黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是_ kg19. “的估计”有很多方法,下面这个随机模拟实验就是一种,其过程如下: 如图,随机撒一把米到画有正方形及其内切圆的白纸上,统计落在圆内的米粒数m与正方形内的米粒数n,并计算频率mn;在相同条件下,大量重复以上试验,当mn显现出一定稳定性时,就可以估计出的值为4mn.请说出其中所蕴含的原理: _20. 小静和哥哥两人都很想去观看某场体育比赛,可门票只有一张.哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小静,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小静和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小静去;如果和为奇数,则哥哥去.哥哥设计的游戏规则_(填“公平”或“不公平”)三、计算题21. 甲、乙两个人做游戏:在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由22. 研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续活动结果:摸球实验活动一共做了50次,统计结果如下表: 球的颜色无记号有记号红色黄色红色黄色摸到的次数182822推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?23. 某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中(1)该运动员去年的比赛中共投中多少个3分球?(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由24. 抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率25. 小明学习电学知识后,用四个开关按键(每个开关键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图(四个开关按键都处于打开状态)如图所示,求同时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)【答案】1. D2. B3. C4. D5. A6. B7. A8. B9. A10. B11. 红球12. 1213. 1414. 1515. ;16. 4nm17. 20个18. 56019. 用频率估计概率20. 不公平21. 解:根据题意列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(4,2),(3,3),(2,4),共5种,P(甲获胜)=516,P(乙获胜)=1516=1116,则该游戏不公平22. 解:(1)由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,红球所占百分比为2050=40%,黄球所占百分比为3050=60%,答:红球占40%,黄球占60%;(2)由题意可知,50次摸球实验活动中,出现有记号的球4次,总球数为8450=100,红球数为10040%=40,答:盒中红球有40个23. 解:(1)设该运动员共出手x个3分球,根据题意,得0.75x40=12,解得x=640,0.25x=0.25640=160(个),答:运动员去年的比赛中共投中160个3分球;(2)小亮的说法不正确;3分球的命中率为0.25,是40场比赛来说的平均水平,而在其中的一场比赛中,命中率并不一定是0.25,所以该运动员这场比赛中不一定投中了5个3分球24. 解:(1)1020%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为5010204=16(人);补全条形图如图所示:(3)700450=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=212=1625. 解:(1)任意闭合一个开关按键,灯泡能发光的概率=14;(2)画树状图为:共有12种等可能的结果数,其中同时闭合其中的两个开关按键,灯泡能发光的结果数为6,所以同时闭合其中的两个开关按键,灯泡能发光的概率=612=12
展开阅读全文