2019-2020年八年级数学下册 18 勾股定理复习教学案(2)(无答案) 新人教版.doc

上传人:tian****1990 文档编号:3361234 上传时间:2019-12-12 格式:DOC 页数:5 大小:211KB
返回 下载 相关 举报
2019-2020年八年级数学下册 18 勾股定理复习教学案(2)(无答案) 新人教版.doc_第1页
第1页 / 共5页
2019-2020年八年级数学下册 18 勾股定理复习教学案(2)(无答案) 新人教版.doc_第2页
第2页 / 共5页
2019-2020年八年级数学下册 18 勾股定理复习教学案(2)(无答案) 新人教版.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
2019-2020年八年级数学下册 18 勾股定理复习教学案(2)(无答案) 新人教版学习目标1.掌握直角三角形的边、角之间所存在的关系,熟练应用直角三角形的勾股定理和逆定理来解决实际问题2.经历反思本单元知识结构的过程,理解和领会勾股定理和逆定理3.熟悉勾股定理的历史,进一步了解我国古代数学的伟大成就,激发爱国主义思想,培养良好的学习态度重点:掌握勾股定理以及逆定理的应用难点:应用勾股定理以及逆定理考点一、已知两边求第三边1在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_2已知直角三角形的两边长为3、2,则另一条边长是_3在数轴上作出表示的点4已知,如图在ABC中,AB=BC=CA=2cm,AD是边BC上的高求 AD的长;ABC的面积考点二、利用列方程求线段的长ADEBC1如图,铁路上A,B两点相距25km,C,D为两村庄,DAAB于A,CBAB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?2.如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离考点三、判别一个三角形是否是直角三角形1.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有 2.若三角形的三别是a2+b2,2ab,a2-b2(ab0),则这个三角形是 .3.如图1,在ABC中,AD是高,且,求证:ABC为直角三角形。考点四、灵活变通1.在RtABC中, a,b,c分别是三条边,B=90,已知a=6,b=10,则边长c= 682.直角三角形中,以直角边为边长的两个正方形的面积为7,8,则以斜边为边长的正方形的面积为_3.如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外 壁爬行,要从A点爬到B点,则最少要爬行 cm4.如图:带阴影部分的半圆的面积是 (取3)5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是 6.若一个三角形的周长12cm,一边长为3cm,其他两边之差为cm,则这个三角形是_7.如图:在一个高6米,长10米的楼梯表面铺地毯,则该地毯的长度至少是 米。考点五、能力提升1.已知:如图,ABC中,ABAC,AD是BC边上的高求证:AB2-AC2=BC(BD-DC)2.如图,四边形ABCD中,F为DC的中点,E为BC上一点,且你能说明AFE是直角吗?3.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?三.随堂检测1已知ABC中,A= B= C,则它的三条边之比为( ) A1:1:1 B1:1 :2 C1:2 :3 D1:4:12下列各组线段中,能够组成直角三角形的是( ) A6,7,8 B5,6,7 C4,5,6 D3,4,53若等边ABC的边长为2cm,那么ABC的面积为( )A cm2 B2 cm2 C3 cm2 D4cm24.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为()A6cm B85cm C3013cm D6013 cm5.有两棵树,一棵高6米,另一棵高3米,两树相距4米一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米6.一座桥横跨一江,桥长12m,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶m7.一个三角形的三边的比为51213,它的周长为60cm,则它的面积是8.已知直角三角形一个锐角60,斜边长为1,那么此直角三角形的周长是 9.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺求竹竿高与门高OB图1BAA10.如图1所示,梯子AB靠在墙上,梯子的底端A到墙根O 的距离为2m,梯子的顶端B到地面的距离为7m现将梯子的底端A向外移动到A,使梯子的底端A到墙根O的距离为3m,同时梯子的顶端B下降到B,那么BB也等于1m吗?11.已知:如图ABC中,AB=AC=10,BC=16,点D在BC上,DACA于A求:BD的长四.小结与反思复习第一步:勾股定理的有关计算例1: (xx年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为 析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6勾股定理解实际问题例2(xx年吉林省中考试题)图是一面矩形彩旗完全展平时的尺寸图(单位:cm) 其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm在无风的天气里,彩旗自然下垂,如图 求彩旗下垂时最低处离地面的最小高度h 析解:彩旗自然下垂的长度就是矩形DCEF的对角线DE的长度,连接DE,在RtDEF中,根据勾股定理,得DE= h=220-150=70(cm)所以彩旗下垂时的最低处离地面的最小高度h为70cm与展开图有关的计算例3、(xx年青岛市中考试题)如图,在棱长为1的正方体ABCDABCD的表面上,求从顶点A到顶点C的最短距离析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACCA中,线段AC是点A到点C的最短距离而在正方体中,线段AC变成了折线,但长度没有改变,所以顶点A到顶点C的最短距离就是在图2中线段AC的长度在矩形ACCA中,因为AC=2,CC=1所以由勾股定理得AC= 从顶点A到顶点C的最短距离为 复习第二步:1易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形例4:在RtABC中, a,b,c分别是三条边,B=90,已知a=6,b=10,求边长c错解:因为a=6,b=10,根据勾股定理得 c= 剖析:上面解法,由于审题不仔细,忽视了B=90,这一条件而导致没有分清直角三角形的斜边和直角边,错把c当成了斜边正解:因为a=6,b=10,根据勾股定理得,c= 温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2例5:已知一个RtABC的两边长分别为3和4,则第三边长的平方是 错解:因为RtABC的两边长分别为3和4,根据勾股定理得: 第三边长的平方是32+42=25剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论例6:已知a,b,c为ABC三边,a=6,b=8,bc,且c为整数,则c=错解:由勾股定理得c= 剖析:此题并没有告诉你ABC为直角三角形,因此不能乱用勾股定理正解:由bc,结合三角形三边关系得8c6+8,即8c14,又因c为整数,故c边长为9、10、11、12、13温馨提示:只有在直角三角形中,才能用勾股定理,因此解题时一定注意已知条件中是否为直角三角形2思想方法:本节主要思想方法有数形结合的思想、方程的思想、化归的思想及分类的思想;例7:如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?析解:因两直角边AC=6cm,BC=8cm,所以由勾股定理求得AB=10 cm,设CD=x,由题意知则DE=x,AE=AC=6,BE=10-6=4,BD=8-x在RtBDE由勾股定理得:42+x2=(8-x)2,解得x=3,故CD的长能求出且为3运用中的质疑点:(1)使用勾股定理的前提是直角三角形;(2)在求解问题的过程中,常列方程或方程组来求解;(3)已知直角三角形中两边长,求第三边长,要弄清哪条边是斜边,哪条边是直角边,不能确定时,要分类讨论复习第三步:选择题 1已知ABC中,A= B= C,则它的三条边之比为( ) A1:1: B1: :2 C1: : D1:4:1 2已知直角三角形一个锐角60,斜边长为1,那么此直角三角形的周长是( ) A B3 C D 3下列各组线段中,能够组成直角三角形的是( ) A6,7,8 B5,6,7 C4,5,6 D3,4,5 4下列各命题的逆命题成立的是( ) A全等三角形的对应角相等 B如果两个数相等,那么它们的绝对值相等 C两直线平行,同位角相等 D如果两个角都是45,那么这两个角相等 5若等边ABC的边长为2cm,那么ABC的面积为( ) A cm2 B2 cm2 C3 cm2 D4cm2 6在RtABC中,已知其两直角边长a=1,b=3,那么斜边c的长为( )7直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为()A6cm B85cm C cm D cm8两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距( )A50cm B100cm C140cm D80cm9、有两棵树,一棵高6米,另一棵高3米,两树相距4米一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米10一座桥横跨一江,桥长12m,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶m11一个三角形的三边的比为51213,它的周长为60cm,则它的面积是12在RtABC中,C90,中线BE13,另一条中线AD2331,则AB13有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺求竹竿高与门高14如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部什么位置断裂的吗?请你试一试15如图4所示,梯子AB靠在墙上,梯子的底端A到墙根O 的距离为2m,梯子的顶端B到地面的距离为7m现将梯子的底端A向外移动到A,使梯子的底端A到墙根O的距离为3m,同时梯子的顶端B下降到B,那么BB也等于1m吗?16在ABC中,三条边的长分别为a,b,c,an21,b2n,cn2+1(n1,且n为整数),这个三角形是直角三角形吗?若是,哪个角是直角?与同伴一起研究15、参考在RtABO中,梯子AB2AO2+BO222+7253在RtABO中,梯子AB253AO2+BO232+BO2,所以,BO 2 236所以BBOBOB116、参考因为a2n42n2+1,b24n,c2n4+2n2+1,a2+b2c2,所以ABC是直角三角形,C为直角复习小结通过教学,我们知道勾股定理的使用范围是在直角三角形中,因此要注意直角三角形的条件,要创造直角三角形,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力。在不条件、不同环境中反复运用定理,要达到熟练使用,灵活运用的程度
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!