资源描述
2019年高考数学真题分类汇编 12.3 二项分布与正态分布 理考点一条件概率及二项分布1.(xx课标,5,5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45答案A2.(xx陕西,19,12分)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概率0.50.5作物市场价格(元/kg)610概率0.40.6(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.解析(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,利润=产量市场价格-成本,X所有可能的取值为50010-1 000=4 000,5006-1 000=2 000,30010-1 000=2 000,3006-1 000=800.P(X=4 000)=P()P()=(1-0.5)(1-0.4)=0.3,P(X=2 000)=P()P(B)+P(A)P()=(1-0.5)0.4+0.5(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.50.4=0.2,所以X的分布列为X4 0002 000800P0.30.50.2(2)设Ci表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(Ci)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2 000元的概率为P(C2C3)+P(C1C3)+P(C1C2)=30.820.2=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.考点二正态分布3.(xx课标,18,12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(,2),其中近似为样本平均数,2近似为样本方差s2.(i)利用该正态分布,求P(187.8Z212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(i)的结果,求EX.附:12.2.若ZN(,2),则P(-Z +)=0.682 6,P(-2Z +2)=0.954 4.解析(1)抽取产品的质量指标值的样本平均数和样本方差s2分别为=1700.02+1800.09+1900.22+2000.33+2100.24+2200.08+2300.02=200,s2=(-30)20.02+(-20)20.09+(-10)20.22+00.33+1020.24+2020.08+3020.02=150.(2)(i)由(1)知,ZN(200,150),从而P(187.8Z212.2)=P(200-12.2Z200+12.2)=0.682 6.(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知XB(100,0.682 6),所以EX=1000.682 6=68.26.
展开阅读全文