资源描述
2019-2020年高考数学 专题46 用正难则反思想求互斥事件的概率黄金解题模板【高考地位】互斥事件有一个发生的概率是高考重点考查内容,求对立事件的概率是“正难则反”思想的具体应用,在高考中时有考查。在高考中多以选择题、填空题的形式考查,有时也出现在解答题中,属容易题。【方法点评】方法 用正难则反思想求互斥事件的概率使用情景:求互斥事件的概率解题模板:第一步 首先要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义;第二步 然后正确判定事件间的关系,善于将A转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式;第三步 得出结论.例1. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球从中一次随机摸出2只球,则这2只球颜色不同的概率为_【答案】【解析】所求概率为1.例2、黄种人人群中各种血型的人数所占的比例见下表:血型ABABO该血型的人数所占的比例28%29%8%35%已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解法二:“任找一个人,其血不能输给小明”的对立事件是“任找一个人,其血可以输给小明”,由对立事件概率公式结合(1)知所求概率为10.640.36. 例3、一个袋中装有1红、2白和2黑共5个小球,这5个球除颜色外其它都相同,现从袋中任取2个球,则至少取到1个白球的概率为_【答案】【解析】“至少一个白球”的对立事件为“没有白球”,所以【变式演练1】甲、乙二人玩数字游戏,先由甲任想一数字,记为a,再由乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b1,2,3,若|ab|1,则称甲、乙“心有灵犀”现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A. B. C. D.【答案】D考点:互斥事件.【变式演练2】甲、乙两名射击运动员分别对一个目标射击1次,甲射中的概率为,乙射中的概率为,求:(1)2人中恰有1人射中目标的概率;(2)2人至少有1人射中目标的概率.【解析】记“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B,则A与B,与B,A与,与为相互独立事件, (1)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件发生),另一种是甲未击中、乙击中(事件发生)根据题意,事件与互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:. 2人中恰有1人射中目标的概率是0.26 6分(2)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是,“两人至少有1人击中目标”的概率为 【变式演练3】有5张大小相同的卡片分别写着数字1、2、3、4、5,甲,乙二人依次从中各抽取一张卡片(不放回),试求:(1)甲抽到写有奇数数字卡片,且乙抽到写有偶数数字卡片的概率;(2)甲、乙二人至少抽到一张偶数数字卡片的概率。【答案】(1)甲抽到奇数,乙抽到偶数的抽法共有6种,所求概率为(2)甲、乙二人至少抽到一张奇数数字卡片的概率【高考再现】1. 【xx年高考北京理数】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球 B.乙盒中红球与丙盒中黑球一样多 C.乙盒中红球不多于丙盒中红球 D.乙盒中黑球与丙盒中红球一样多【答案】C考点:概率统计分析.【名师点睛】本题将小球与概率知识结合,创新味十足,是能力立意的好题.如果所求事件对应的基本事件有多种可能,那么一般我们通过逐一列举计数,再求概率,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏.另外注意对立事件概率公式的应用.2. 【xx年高考北京理数】(本小题13分)A、B、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);A班6 6.5 7 7.5 8B班6 7 8 9 10 11 12C班3 4.5 6 7.5 9 10.5 12 13.5(1)试估计C班的学生人数;(2)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记 ,表格中数据的平均数记为 ,试判断和的大小,(结论不要求证明)【答案】(1)40;(2);(3).【解析】试题分析:()根据图表判断C班人数,由分层抽样的抽样比计算C班的学生人数;()根据题意列出“该周甲的锻炼时间比乙的锻炼时间长”的所有事件,由独立事件概率公式求概率.()根据平均数公式进行判断即可.试题解析:(1)由题意知,抽出的名学生中,来自班的学生有名,根据分层抽样方法,班的学生人数估计为;(2)设事件为“甲是现有样本中班的第个人”,事件为“乙是现有样本中班的第个人”,由题意可知,;,,.设事件为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知,因此(3)根据平均数计算公式即可知,.考点:1.分层抽样;2.独立事件的概率;3.平均数 3. 【xx高考山东理数】(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;()“星队”两轮得分之和为X的分布列和数学期望EX.【答案】()()分布列见解析,【解析】试题分析:()找出“星队”至少猜对3个成语所包含的基本事件,由独立事件的概率公式和互斥事件的概率加法公式求解;()由题意,随机变量X的可能取值为0,1,2,3,4,6.由事件的独立性与互斥性,得到X的分布列,根据期望公式求解. ()由题意,随机变量X的可能取值为0,1,2,3,4,6.由事件的独立性与互斥性,得 , , , ,.可得随机变量X的分布列为X012346P所以数学期望.考点:1.独立事件的概率公式和互斥事件的概率加法公式;2.随机变量的分布列和数学期望.【名师点睛】本题主要考查独立事件的概率公式和互斥事件的概率加法公式、随机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数,利用独立事件的概率公式和互斥事件的概率加法公式求解.本题较难,能很好的考查考生数学应用意识、基本运算求解能力等.【反馈练习】1. 口袋内装有红色、绿色和蓝色卡片各2张,一次取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是以下事件“2张卡片都不是红色;2张卡片恰有一张红色;2张卡片至少有一张红色;2张卡片恰有两张绿色”中的哪几个?( )A. B. C. D. 【答案】A 2. 袋中有形状、大小都相同的4个球,其中2个红球、2个白球.从中随机一次摸出2个球,则这2个球中至少有1个白球的概率为( )A. B. C. D. 【答案】D【解析】袋中有形状、大小都相同的4个球,其中2个红球,2个白球。从中随机一次摸出2个球,基本事件总数,这2个球中至少有1个白球的对立事件是这2个球中都是红球,这2个球中至少有1个白球的概率.故选:D.3. 甲、乙两人下象棋,甲获胜的概率为30%,两人下成和棋的概率为50%,则乙获胜的概率为_,甲不输的概率为_.【答案】 20% 80% 4. 口袋中有若干红球、黄球与蓝球,摸出红球的概率为0.45,摸出红球或黄球的概率为0.65,则摸出红球或蓝球的概率为_【答案】0.8【解析】由题意,摸出红球的概率为,摸出红球或黄球的概率为,故摸出蓝色球的概率为,故摸出红球或蓝球的概率为,故答案为.5.甲、乙两人玩一种游戏:在装有质地、大小完全相同,编号分别为1,2,3,4,5五个球的口袋中,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(1)求甲赢且编号和为6的事件发生的概率;(2)这种游戏规则公平吗?试说明理由.【答案】(1);(2)不公平.理由参考解析【解析】试题分析:(1)因为游戏规则是编号分别为1,2,3,4,5五个球的口袋中,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号如果两个编号的和为偶数算甲赢,否则算乙赢.该游戏是有放回的,所以总共的基本事件有25种,再列出符合条件的基本事件数即可得到结论.(2)由于题意可知甲获胜的基本事件共有13个,所以甲获胜的概率大于乙获胜的概率所以这个游戏不公平.试题解析:(1)设“两个编号和为6”为事件A,则事件A包含的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1)共5个,又甲、乙两人取出的数字共有5525(个)等可能的结果,故.(2)设甲胜为事件B,乙胜为事件C,则甲胜即两编号和为偶数所包含的基本事件数有13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5), (4,2),(4,4),(5,1),(5,3),(5,5)。所以甲胜的概率, 乙胜的概率 (可省略)所以这种游戏规则是不公平的.考点:1.概率的问题.2.列举分类的思想.3.事件的互斥的概念.6. 某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率)【答案】详见解析故一位顾客一次购物的结算时间不超过2分钟的概率为.
展开阅读全文