2019-2020年高考数学一轮复习 第十七章 空间向量与立体几何讲义.doc

上传人:tian****1990 文档编号:2670912 上传时间:2019-11-28 格式:DOC 页数:27 大小:2.78MB
返回 下载 相关 举报
2019-2020年高考数学一轮复习 第十七章 空间向量与立体几何讲义.doc_第1页
第1页 / 共27页
2019-2020年高考数学一轮复习 第十七章 空间向量与立体几何讲义.doc_第2页
第2页 / 共27页
2019-2020年高考数学一轮复习 第十七章 空间向量与立体几何讲义.doc_第3页
第3页 / 共27页
点击查看更多>>
资源描述
2019-2020年高考数学一轮复习 第十七章 空间向量与立体几何讲义考点内容解读要求五年高考统计常考题型预测热度xxxxxxxxxx1.空间向量的概念及线线角、线面角求异面直线所成角和线面角B22题10分解答题2.求面面角求二面角B22题10分22题10分解答题分析解读江苏高考近几年考查用空间向量知识来解决立体几何问题的命题方向都是求夹角问题,试题难度不大,只要按照用空间向量处理问题的步骤,一般都容易解决.命题探究在平面ABCD内,过点A作AEAD,交BC于点E.因为AA1平面ABCD,所以AA1AE,AA1AD.如图,以,为正交基底建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=,BAD=120,则A(0,0,0),B(,-1,0),D(0,2,0),E(,0,0),A1(0,0,),C1(,1,).(1)=(,-1,-),=(,1,),则cos=-,因此异面直线A1B与AC1所成角的余弦值为.(2)平面A1DA的一个法向量为=(,0,0).设m=(x,y,z)为平面BA1D的法向量,又=(,-1,-),=(-,3,0),则即不妨取x=3,则y=,z=2,所以m=(3,2)为平面BA1D的一个法向量,从而cos=.设二面角B-A1D-A的大小为,则|cos |=.因为0,所以sin =.因此二面角B-A1D-A的正弦值为.五年高考考点一空间向量的概念及线线角、线面角1.(xx四川,14,5分)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点.设异面直线EM与AF所成的角为,则cos 的最大值为.答案2.(xx广东改编,5,5分)已知向量a=(1,0,-1),则下列向量中与a成60夹角的是. (-1,1,0)(1,-1,0)(0,-1,1)(-1,0,1)答案3.(xx北京理,16,14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.解析(1)证明:设AC,BD交点为E,连结ME.因为PD平面MAC,平面MAC平面PDB=ME,所以PDME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)取AD的中点O,连结OP,OE.因为PA=PD,所以OPAD.又因为平面PAD平面ABCD,且OP平面PAD,所以OP平面ABCD.因为OE平面ABCD,所以OPOE.因为ABCD是正方形,所以OEAD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即令x=1,则y=1,z=.于是n=(1,1,).平面PAD的一个法向量为p=(0,1,0).所以cos=.由题意知二面角B-PD-A为锐角,所以它的大小为.(3)由题意知M,C(2,4,0),=.设直线MC与平面BDP所成角为,则sin =|cos|=.所以直线MC与平面BDP所成角的正弦值为.4.(xx课标全国理,19,12分)如图,四棱锥P-ABCD中,PA底面ABCD,ADBC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN平面PAB;(2)求直线AN与平面PMN所成角的正弦值.解析(1)证明:由已知得AM=AD=2.取BP的中点T,连结AT,TN,由N为PC中点知TNBC,TN=BC=2.(3分)又ADBC,故TNAM,故四边形AMNT为平行四边形,于是MNAT.因为AT平面PAB,MN平面PAB,所以MN平面PAB.(6分)(2)取BC的中点E,连结AE.由AB=AC得AEBC,从而AEAD,且AE=.以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,=(0,2,-4),=,=.设n=(x,y,z)为平面PMN的法向量,则即(10分)可取n=(0,2,1).于是|cos|=.即直线AN与平面PMN所成角的正弦值为.(12分)5.(xx江苏,22,10分)如图,在四棱锥P-ABCD中,已知PA平面ABCD,且四边形ABCD为直角梯形,ABC=BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.解析以,为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)易知AD平面PAB,所以是平面PAB的一个法向量,=(0,2,0).因为=(1,1,-2),=(0,2,-2),设平面PCD的法向量为m=(x,y,z),则m=0,m=0,即令y=1,解得z=1,x=1.所以m=(1,1,1)是平面PCD的一个法向量.从而cos=,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为=(-1,0,2),设=(-,0,2)(01),又=(0,-1,0),则=+=(-,-1,2),又=(0,-2,2),从而cos=.设1+2=t,t1,3,则cos2 =.当且仅当t=,即=时,|cos|的最大值为.因为y=cos x在上是减函数,所以此时直线CQ与DP所成的角取得最小值.又因为BP=,所以BQ=BP=.6.(xx课标,19,12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面所成角的正弦值.解析(1)交线围成的正方形EHGF如图:(2)作EMAB,垂足为M,则AM=A1E=4,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH=6,所以AH=10.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),=(10,0,0),=(0,-6,8).设n=(x,y,z)是平面EHGF的法向量,则即所以可取n=(0,4,3).又=(-10,4,8),故|cos|=.所以AF与平面EHGF所成角的正弦值为.教师用书专用(710)7.(xx浙江,15,6分)已知e1,e2是空间单位向量,e1e2=.若空间向量b满足be1=2,be2=,且对于任意x,yR,|b-(xe1+ye2)|b-(x0e1+y0e2)|=1(x0,y0R),则x0=,y0=,|b|=.答案1;2;28.(xx北京,17,14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:ABFG;(2)若PA底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.解析(1)证明:在正方形AMDE中,因为B是AM的中点,所以ABDE.又因为AB平面PDE,所以AB平面PDE.因为AB平面ABF,且平面ABF平面PDE=FG,所以ABFG.(2)因为PA底面ABCDE,所以PAAB,PAAE.如图建立空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),=(1,1,0).设平面ABF的法向量为n=(x,y,z),则即令z=1,则y=-1.所以n=(0,-1,1).设直线BC与平面ABF所成角为,则sin =|cos|=.因此直线BC与平面ABF所成角的大小为.设点H的坐标为(u,v,w).因为点H在棱PC上,所以可设=(01),即(u,v,w-2)=(2,1,-2).所以u=2,v=,w=2-2.因为n是平面ABF的法向量,所以n=0,即(0,-1,1)(2,2-2)=0.解得=,所以点H的坐标为.所以PH=2.9.(xx课标全国理,18,12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,BAA1=60.(1)证明:ABA1C;(2)若平面ABC平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.解析(1)证明:取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OCAB.由于AB=AA1,BAA1=60,故AA1B为等边三角形,所以OA1AB.因为OCOA1=O,所以AB平面OA1C.又A1C平面OA1C,故ABA1C.(2)由(1)知OCAB,OA1AB.又平面ABC平面AA1B1B,交线为AB,所以OC平面AA1B1B,故OA,OA1,OC两两相互垂直.以O为坐标原点,的方向为x轴的正方向,的方向为y轴正方向,的方向为z轴正方向,|为单位长度,建立如图所示的空间直角坐标系O-xyz.由题设知A(1,0,0),A1(0,0),C(0,0,),B(-1,0,0).则=(1,0,),=(-1,0),=(0,-,).设n=(x,y,z)是平面BB1C1C的法向量,则即可取n=(,1,-1).故cos=-.所以A1C与平面BB1C1C所成角的正弦值为.10.(xx福建理,19,13分)如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1底面ABCD,ABDC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k0).(1)求证:CD平面ADD1A1;(2)若直线AA1与平面AB1C所成角的正弦值为,求k的值;(3)现将与四棱柱ABCD-A1B1C1D1形状和大小完全相同的两个四棱柱拼接成一个新的四棱柱.规定:若拼接成的新四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)解析(1)证明:取CD的中点E,连结BE.ABDE,AB=DE=3k,四边形ABED为平行四边形,BEAD且BE=AD=4k.在BCE中,BE=4k,CE=3k,BC=5k,BE2+CE2=BC2,BEC=90,即BECD,又BEAD,所以CDAD.AA1平面ABCD,CD平面ABCD,AA1CD.又AA1AD=A,CD平面ADD1A1.(2)以D为原点,的方向为x,y,z轴的正方向建立如图所示的空间直角坐标系,则A(4k,0,0),C(0,6k,0),B1(4k,3k,1),A1(4k,0,1),所以=(-4k,6k,0),=(0,3k,1),=(0,0,1).设平面AB1C的法向量n=(x,y,z),则由得取y=2,得n=(3,2,-6k).设AA1与平面AB1C所成角为,则sin =|cos|=,解得k=1,故所求k的值为1.(3)共有4种不同的方案.f(k)=考点二求面面角1.(xx课标全国理,18,12分)如图,在四棱锥P-ABCD中,ABCD,且BAP=CDP=90.(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,APD=90,求二面角A-PB-C的余弦值.解析本题考查了立体几何中面面垂直的证明和二面角问题.(1)由已知BAP=CDP=90,得ABAP,CDPD.由于ABCD,故ABPD,又APPD=P,从而AB平面PAD.又AB平面PAB,所以平面PAB平面PAD.(2)在平面PAD内作PFAD,垂足为F.由(1)可知,AB平面PAD,故ABPF,又ADAB=A,可得PF平面ABCD.以 F为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系F-xyz.由(1)及已知可得A,P,B,C.所以=,=(,0,0),=,=(0,1,0).设n=(x1,y1,z1)是平面PCB的法向量,则即可取n=(0,-1,-).设m=(x2,y2,z2)是平面PAB的法向量,则即可取m=(1,0,1).则cos=-.易知二面角A-PB-C为钝二面角,所以二面角A-PB-C的余弦值为-.2.(xx四川理,18,12分)如图,在四棱锥P-ABCD中,ADBC,ADC=PAB=90,BC=CD=AD,E为棱AD的中点,异面直线PA与CD所成的角为90.(1)在平面PAB内找一点M,使得直线CM平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45,求直线PA与平面PCE所成角的正弦值.解析(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M平面PAB),点M即为所求的一个点.理由如下:由已知,BCED,且BC=ED.所以四边形BCDE是平行四边形.从而CMEB.又EB平面PBE,CM平面PBE,所以CM平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)解法一:由已知,CDPA,CDAD,PAAD=A,所以CD平面PAD.从而CDPD.所以PDA是二面角P-CD-A的平面角.所以PDA=45.设BC=1,则在RtPAD中,PA=AD=2.过点A作AHCE,交CE的延长线于点H,连结PH.易知PA平面ABCD,又CE平面ABCD,从而PACE.于是CE平面PAH.所以平面PCE平面PAH.过A作AQPH于Q,则AQ平面PCE.所以APH是PA与平面PCE所成的角.在RtAEH中,AEH=45,AE=1,所以AH=.在RtPAH中,PH=,所以sinAPH=.解法二:由已知,CDPA,CDAD,PAAD=A,所以CD平面PAD.于是CDPD.从而PDA是二面角P-CD-A的平面角.所以PDA=45.由PAAB,可得PA平面ABCD.设BC=1,则在RtPAD中,PA=AD=2.作AyAD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2).设平面PCE的法向量为n=(x,y,z),由得设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为,则sin =.所以直线PA与平面PCE所成角的正弦值为.3.(xx安徽,19,13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EFB1C;(2)求二面角E-A1D-B1的余弦值.解析(1)证明:由正方形的性质可知A1B1ABDC,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1CA1D,又A1D面A1DE,B1C面A1DE,于是B1C面A1DE.又B1C面B1CD1,面A1DE面B1CD1=EF,所以EFB1C.(2)因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1AB,AA1AD,ABAD且AA1=AB=AD,以A为原点,分别以,为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为(0.5,0.5,1).设面A1DE的法向量n1=(r1,s1,t1),而该面上向量=(0.5,0.5,0),=(0,1,-1),由n1,n1得r1,s1,t1应满足的方程组(-1,1,1)为其一个解,所以可取n1=(-1,1,1).设面A1B1CD的法向量n2=(r2,s2,t2),而该面上向量=(1,0,0),=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角E-A1D-B1的余弦值为=.4.(xx福建,17,13分)如图,在几何体ABCDE中,四边形ABCD是矩形,AB平面BEC,BEEC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.解析解法一:(1)证明:如图,取AE的中点H,连结HG,HD,又G是BE的中点,所以GHAB,且GH=AB.又F是CD的中点,所以DF=CD.由四边形ABCD是矩形得,ABCD,AB=CD,所以GHDF,且GH=DF,从而四边形HGFD是平行四边形,所以GFDH.又DH平面ADE,GF平面ADE,所以GF平面ADE.(2)如图,在平面BEC内,过B点作BQEC.因为BECE,所以BQBE.又因为AB平面BEC,所以ABBE,ABBQ.以B为原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB平面BEC,所以=(0,0,2)为平面BEC的法向量.设n=(x,y,z)为平面AEF的法向量.又=(2,0,-2),=(2,2,-1),由得取z=2,得n=(2,-1,2).从而cos=,所以平面AEF与平面BEC所成锐二面角的余弦值为.解法二:(1)证明:如图,取AB中点M,连结MG,MF.又G是BE的中点,可知GMAE.又AE平面ADE,GM平面ADE,所以GM平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MFAD.又AD平面ADE,MF平面ADE,所以MF平面ADE.又因为GMMF=M,GM平面GMF,MF平面GMF,所以平面GMF平面ADE.因为GF平面GMF,所以GF平面ADE.(2)同解法一.5.(xx浙江,17,15分)如图,在三棱柱ABC-A1B1C1中,BAC=90,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D平面A1BC;(2)求二面角A1-BD-B1的平面角的余弦值.解析(1)证明:设E为BC的中点,由题意得A1E平面ABC,所以A1EAE.因为AB=AC,所以AEBC.故AE平面A1BC.由D,E分别为B1C1,BC的中点,得DEB1B且DE=B1B,从而DEA1A且DE=A1A,所以A1AED为平行四边形.故A1DAE.又因为AE平面A1BC,所以A1D平面A1BC.(2)解法一:作A1FBD且A1FBD=F,连结B1F.由AE=EB=,A1EA=A1EB=90,得A1B=A1A=4.由A1D=B1D,A1B=B1B,得A1DB与B1DB全等.由A1FBD,得B1FBD,因此A1FB1为二面角A1-BD-B1的平面角.由A1D=,A1B=4,DA1B=90,得BD=3,A1F=B1F=,由余弦定理得cosA1FB1=-.解法二:以CB的中点E为原点,分别以射线EA,EB为x,y轴的正半轴,建立空间直角坐标系E-xyz,如图所示.由题意知各点坐标如下:A1(0,0,),B(0,0),D(-,0,),B1(-,).因此=(0,-),=(-,-,),=(0,0).设平面A1BD的法向量为m=(x1,y1,z1),平面B1BD的法向量为n=(x2,y2,z2).由即可取m=(0,1).由即可取n=(,0,1).于是cos=.由题意可知,所求二面角的平面角是钝角,故二面角A1-BD-B1的平面角的余弦值为-.6.(xx陕西,18,12分)如图1,在直角梯形ABCD中,ADBC,BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将ABE沿BE折起到A1BE的位置,如图2.(1)证明:CD平面A1OC;(2)若平面A1BE平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.解析(1)证明:在题图1中,因为AB=BC=1,AD=2,E是AD的中点,BAD=,所以BEAC.即在题图2中,BEOA1,BEOC,从而BE平面A1OC,又CDBE,所以CD平面A1OC.(2)因为平面A1BE平面BCDE,又由(1)知,BEOA1,BEOC,所以A1OC为二面角A1-BE-C的平面角,所以A1OC=.如图,以O为原点,建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BCED,所以B,E,A1,C,得=,=,=(-,0,0).设平面A1BC的法向量n1=(x1,y1,z1),平面A1CD的法向量n2=(x2,y2,z2),平面A1BC与平面A1CD夹角为,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos =|cos|=,即平面A1BC与平面A1CD夹角的余弦值为.7.(xx重庆,19,13分)如图,三棱锥P-ABC中,PC平面ABC,PC=3,ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(1)证明:DE平面PCD;(2)求二面角A-PD-C的余弦值.解析(1)证明:由PC平面ABC,DE平面ABC,得PCDE.由CE=2,CD=DE=得CDE为等腰直角三角形,故CDDE.由PCCD=C,DE垂直于平面PCD内两条相交直线,故DE平面PCD.(2)由(1)知,CDE为等腰直角三角形,DCE=.如图,过D作DF垂直CE于F,易知DF=FC=FE=1,又已知EB=1,故FB=2.由ACB=得DFAC,=,故AC=DF=.以C为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则C(0,0,0),P(0,0,3),A,E(0,2,0),D(1,1,0),=(1,-1,0),=(-1,-1,3),=.设平面PAD的法向量为n1=(x1,y1,z1),由n1=0,n1=0,得故可取n1=(2,1,1).由(1)可知DE平面PCD,故平面PCD的法向量n2可取为,即n2=(1,-1,0).从而法向量n1,n2的夹角的余弦值为cos=,故所求二面角A-PD-C的余弦值为.8.(xx江苏,22,10分)如图,在直三棱柱A1B1C1-ABC中,ABAC,AB=AC=2,A1A=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1所成二面角的正弦值.解析(1)以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以=(2,0,-4),=(1,-1,-4).因为cos=,所以异面直线A1B与C1D所成角的余弦值为.(2)设平面ADC1的法向量为n1=(x,y,z),因为=(1,1,0),=(0,2,4),所以n1=0,n1=0,即x+y=0且y+2z=0,取z=1,得x=2,y=-2,所以n1=(2,-2,1)是平面ADC1的一个法向量.取平面AA1B的一个法向量为n2=(0,1,0),设平面ADC1与平面ABA1所成二面角的大小为.由|cos |=,得sin =.因此,平面ADC1与平面ABA1所成二面角的正弦值为.教师用书专用(913)9.(xx山东理,17,12分)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD平面FGH;(2)若CF平面ABC,ABBC,CF=DE,BAC=45,求平面FGH与平面ACFD所成的角(锐角)的大小.解析(1)证法一:连结DG,CD,设CDGF=O,连结OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DFGC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OHBD,又OH平面FGH,BD平面FGH,所以BD平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BHEF,BH=EF,所以四边形BHFE为平行四边形,可得BEHF.在ABC中,G为AC的中点,H为BC的中点,所以GHAB.又GHHF=H,所以平面FGH平面ABED.因为BD平面ABED,所以BD平面FGH.(2)解法一:设AB=2,则CF=1.在三棱台DEF-ABC中,G为AC的中点,由DF=AC=GC,可得四边形DGCF为平行四边形,因此DGFC.又FC平面ABC,所以DG平面ABC.在ABC中,由ABBC,BAC=45,G是AC中点,所以AB=BC,GBGC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系G-xyz.所以G(0,0,0),B(,0,0),C(0,0),D(0,0,1).可得H,F(0,1),故=,=(0,1).设n=(x,y,z)是平面FGH的法向量,则由可得可得平面FGH的一个法向量n=(1,-1,).因为是平面ACFD的一个法向量,=(,0,0),所以cos=.所以平面FGH与平面ACFD所成角(锐角)的大小为60.解法二:作HMAC于点M,作MNGF于点N,连结NH.由FC平面ABC,得HMFC,又FCAC=C,所以HM平面ACFD.因此GFNH,所以MNH即为所求的角.在BGC中,MHBG,MH=BG=,由GNMGCF,可得=,从而MN=.由HM平面ACFD,MN平面ACFD,得HMMN,因此tanMNH=,所以MNH=60.所以平面FGH与平面ACFD所成角(锐角)的大小为60.10.(xx湖北,19,12分)九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD底面ABCD,且PD=CD,过棱PC的中点E,作EFPB交PB于点F,连结DE,DF,BD,BE.(1)证明:PB平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值.解析解法一:(1)因为PD底面ABCD,所以PDBC,由底面ABCD为长方形,有BCCD,而PDCD=D,所以BC平面PCD,而DE平面PCD,所以BCDE.又因为PD=CD,点E是PC的中点,所以DEPC.而PCBC=C,所以DE平面PBC.而PB平面PBC,所以PBDE.又PBEF,DEEF=E,所以PB平面DEF.由DE平面PBC,PB平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为DEB,DEF,EFB,DFB.(2)如图,在面PBC内,延长BC与FE交于点G,则DG是平面DEF与平面ABCD的交线.由(1)知,PB平面DEF,所以PBDG.又因为PD底面ABCD,所以PDDG.而PDPB=P,所以DG平面PBD.故BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=,有BD=,在RtPDB中,由DFPB,得DPF=FDB=,则tan=tanDPF=,解得=.所以=.故当面DEF与面ABCD所成二面角的大小为时,=.解法二:(1)如图,以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系.设PD=DC=1,BC=,则D(0,0,0),P(0,0,1),B(,1,0),C(0,1,0),=(,1,-1),点E是PC的中点,所以E,=,于是=0,即PBDE.又已知EFPB,而DEEF=E,所以PB平面DEF.因=(0,1,-1),=0,则DEPC,所以DE平面PBC.由DE平面PBC,PB平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为DEB,DEF,EFB,DFB.(2)由PD平面ABCD,所以=(0,0,1)是平面ABCD的一个法向量;由(1)知,PB平面DEF,所以=(-,-1,1)是平面DEF的一个法向量.若面DEF与面ABCD所成二面角的大小为,则cos=,解得=,所以=.故当面DEF与面ABCD所成二面角的大小为时,=.11.(xx天津,17,13分)如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A底面ABCD,ABAC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(1)求证:MN平面ABCD;(2)求二面角D1-AC-B1的正弦值;(3)设E为棱A1B1上的点.若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.解析如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2).又因为M,N分别为B1C和D1D的中点,得M,N(1,-2,1).(1)证明:依题意,可得n=(0,0,1)为平面ABCD的一个法向量.=.由此可得n=0,又因为直线MN平面ABCD,所以MN平面ABCD.(2)=(1,-2,2),=(2,0,0).设n1=(x,y,z)为平面ACD1的法向量,则即不妨设z=1,可得n1=(0,1,1).设n2=(x,y,z)为平面ACB1的法向量,则又=(0,1,2),得不妨设z=1,可得n2=(0,-2,1).因此有cos=-,于是sin=.所以,二面角D1-AC-B1的正弦值为.(3)依题意,可设=,其中0,1,则E(0,2),从而=(-1,+2,1).又n=(0,0,1)为平面ABCD的一个法向量,由已知,得cos=,整理得2+4-3=0,又因为0,1,解得=-2.所以,线段A1E的长为-2.12.(xx山东,17,12分)如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,DAB=60,AB=2CD=2,M是线段AB的中点.(1)求证:C1M平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.解析(1)证明:因为四边形ABCD是等腰梯形,且AB=2CD,所以ABDC,又由M是AB的中点,因此CDMA且CD=MA.连结AD1,在四棱柱ABCD-A1B1C1D1中,因为CDC1D1,CD=C1D1,可得C1D1MA,C1D1=MA,所以四边形AMC1D1为平行四边形.因此C1MD1A,又C1M平面A1ADD1,D1A平面A1ADD1,所以C1M平面A1ADD1.(2)解法一:连结AC,MC,由(1)知CDAM且CD=AM,所以四边形AMCD为平行四边形.可得BC=AD=MC,由题意ABC=DAB=60,所以MBC为正三角形,因此AB=2BC=2,CA=,因此CACB.以C为坐标原点,建立如图所示的空间直角坐标系C-xyz.所以A(,0,0),B(0,1,0),D1(0,0,),因此M,所以=,=.设平面C1D1M的法向量n=(x,y,z),由得可得平面C1D1M的一个法向量n=(1,1).又=(0,0,)为平面ABCD的一个法向量,因此cos=.所以平面C1D1M和平面ABCD所成的角(锐角)的余弦值为.解法二:由(1)知平面D1C1M平面ABCD=AB,过C向AB引垂线交AB于N,连结D1N.由CD1平面ABCD,可得D1NAB,因此D1NC为二面角C1-AB-C的平面角.在RtBNC中,BC=1,NBC=60,可得CN=.所以ND1=.在RtD1CN中,cosD1NC=.所以平面C1D1M和平面ABCD所成的角(锐角)的余弦值为.13.(xx广东,18,13分)如图,四边形ABCD为正方形,PD平面ABCD,DPC=30,AFPC于点F,FECD,交PD于点E.(1)证明:CF平面ADF;(2)求二面角D-AF-E的余弦值.解析(1)证明:PD平面ABCD,PDAD,又CDAD,PDCD=D,AD平面PCD,ADPC,又AFPC,AFAD=A,PC平面ADF,即CF平面ADF.(2)解法一:设AB=1,则RtPDC中,CD=1,DPC=30,PC=2,PD=,由(1)知CFDF,DF=,CF=,又FECD,=,DE=,同理EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E,F,P(,0,0),C(0,1,0).设m=(x,y,z)是平面AEF的法向量,则又令x=4,得z=,故m=(4,0,),由(1)知平面ADF的一个法向量为=(-,1,0),设二面角D-AF-E的平面角为,可知为锐角,cos =|cos|=,故二面角D-AF-E的余弦值为.解法二:设AB=1,CF平面ADF,CFDF.在CFD中,DF=,CDAD,CDPD,CD平面ADE.又EFCD,EF平面ADE.EFAE,在DEF中,DE=,EF=,在ADE中,AE=,在ADF中,AF=.由VA-DEF=SADEEF=SADFhE-ADF,解得hE-ADF=,设AEF的边AF上的高为h,由SAEF=EFAE=AFh,解得h=,设二面角D-AF-E的平面角为.则sin =,cos =.三年模拟A组xx模拟基础题组考点一空间向量的概念及线线角、线面角1.(xx江苏徐州铜山中学期中)如图,在三棱锥A-BOC中,AO,OB,OC两两互相垂直,点D,E分别为棱BC,AC的中点,F在棱AO上,且满足OF=OA,已知OA=OC=4,OB=2.(1)求异面直线AD与OC所成角的余弦值;(2)求二面角C-EF-D的正弦值.解析(1)如图,以O为原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.依题意可得O(0,0,0),A(0,0,4),B(2,0,0),C(0,4,0),D(1,2,0),E(0,2,2),F(0,0,1).所以=(1,2,-4),=(0,4,0),所以cos=.因此异面直线AD与OC所成角的余弦值为.(2)平面AOC的一个法向量为=(2,0,0).设m=(x,y,z)为平面DEF的法向量,又=(0,-2,-1),=(-1,0,2),不妨取z=2,则x=4,y=-1,所以m=(4,-1,2)为平面DEF的一个法向量,从而cos=,设二面角C-EF-D的大小为,则|cos |=.因为0,所以sin =.因此二面角C-EF-D的正弦值为.2.(苏教选21,三,2,9,变式)如图,已知点P在正方体ABCD-ABCD的对角线BD上,PDA=60.(1)求DP与CC所成角的大小;(2)求DP与平面AADD所成角的大小.解析如图,以D为原点,DA为单位长建立空间直角坐标系D-xyz.则=(1,0,0),=(0,0,1).连结BD,BD.在平面BBDD中,延长DP交BD于H.设=(m,m,1)(0m1),由已知得=60,因为=|cos,所以2m=.解得m=,所以=.(1)因为cos=,所以=45,即DP与CC所成的角为45.(2)平面AADD的一个法向量是=(0,1,0).因为cos=,所以=60,可得DP与平面AADD所成的角为30.3.(xx江苏海安中学质检)在正方体ABCD-A1B1C1D1中,O是AC的中点,E是线段D1O上一点,且D1E=EO.(1)若=1,求异面直线DE与CD1所成角的余弦值;(2)若平面CDE平面CD1O,求的值.解析不妨设正方体的棱长为1,以,为单位正交基底建立空间直角坐标系D-xyz(图略).则A(1,0,0),O,C(0,1,0),D1(0,0,1).(1)D1E=EO,E,于是=,=(0,-1,1).cos=.所以异面直线DE与CD1所成角的余弦值为.(2)设平面CD1O的法向量为m=(x1,y1,z1),由m=0,m=0得 取x1=1,得y1=z1=1,故可取m=(1,1,1).由D1E=EO,得E,=.设平面CDE的法向量n=(x2,y2,z2),由n=0,n=0,得 取x2=-2,得z2=,即n=(-2,0,).因为平面CDE平面CD1O,所以mn=0,所以=2.4.(xx江苏镇江一模,22)如图,在棱长为3的正方体ABCD-A1B1C1D1中,A1E=CF=1.(1)求两条异面直线AC1与BE所成角的余弦值;(2)求直线BB1与平面BED1F所成角的正弦值.解析(1)以D为原点,建立空间直角坐标系Dxyz,如图所示.则A(3,0,0),C1(0,3,3),B(3,3,0),E(3,0,2),=(-3,3,3),=(0,-3,2).所以cos=,所以两条异面直线AC1与BE所成角的余弦值为.(2)D1(0,0,3),=(0,-3,2),=(3,0,-1),=(0,0,3).设平面BED1F的法向量为n=(x,y,z),由得所以故n=(x,2x,3x),不妨取n=(1,2,3),设直线BB1与平面BED1F所成角为,则sin =|cos|=.所以直线BB1与平面BED1F所成角的正弦值为.考点二求面面角5.(xx江苏苏州期中)在如图所示的四棱锥S-ABCD中,SA底面ABCD,DAB=ABC=90,SA=AB=BC=a,AD=3a(a0),E为线段BS上的一个动点.(1)证明:DE和SC不可能垂直;(2)当点E为线段BS的三等分点(靠近B)时,求二面角S-CD-E的余弦值.解析(1)证明:SA底面ABCD,DAB=90,AB、AD、AS两两垂直,以A为原点,AB、AD、AS所在的直线分别为x轴、y轴、z轴建立空间直角坐标系(如图),则S(0,0,a),C(a,a,0),D(0,3a,0)(a0),SA=AB=a,且SAAB,设E(x,0,a-x),其中0xa,=(x,-3a,a-x),=(a,a,-a),假设DE和SC垂直,则=0,即ax-3a2-a2+ax=2ax-4a2=0,解得x=2a,这与0xa矛盾,假设不成立,所以DE和SC不可能垂直.(2)E为线段BS的三等分点(靠近B),E,设平面SCD的法向量n1=(x1,y1,z1),平面CDE的法向量n2=(x2,y2,z2),=(-a,2a,0),=(0,3a,-a),取n1=(2,1,3).=(-a,2a,0),=,取n2=(2,1,5),设二面角S-CD-E的平面角的大小为,由图可知为锐角,cos =,二面角S-CD-E的余弦值为.6.(xx南京高三调研)如图,在底面为正方形的四棱锥P-ABCD中,侧棱PD底面ABCD,PD=DC,E是线段PC的中点.(1)求异面直线AP与BE所成角的大小;(2)若点F在线段PB上,且使得二面角F-DE-B的正弦值为,求的值.解析(1)在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PD平面ABCD,所以DA,DC,DP两两垂直,故以,为正交基底,建立空间直角坐标系D-xyz.因为PD=DC,所以DA=DC=DP,不妨设DA=DC=DP=2,则D(0,0,0),A(2,0,0),C(0,2,0),P(0,0,2),B(2,2,0).因为E是PC的中点,所以E(0,1,1),所以=(-2,0,2),=(-2,-1,1),所以cos=,从而=.因此异面直线AP与BE所成角的大小为.(2)由(1)可知,=(0,1,1),=(2,2,0),=(2,2,-2).设=,则=(2,2,-2),从而=+=(2,2,2-2).设m=(x1,y1,z1)为平面DEF的法向量,则故取z1=,则y1=-,x1=2-1.故m=(2-1,-,)为平面DEF的一个法向量.设n=(x2,y2,z2)为平面DEB的法向量,则故取x2=1,则y2=-1,z2=1.所以n=(1,-1,1)为平面BDE的一个法向量.因为二面角F-DE-B的正弦值为,所以二面角F-DE-B的余弦值为,所以|cos|=,化简得42=1.因为点F在线段PB上,所以01,所以=,即=.B组xx模拟提升题组(满分:45分时间:20分钟)解答题(共45分)1.(苏教选21,三,2,12,变式)如图,四棱锥S-ABCD中, ABCD,BCCD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD平面SAB;(2)求AB与平面SBC所成角的正弦值.解析以C为坐标原点,射线CD为x轴正半轴,建立如图所示的空间直角坐标系C-xyz.则D(1,0,0),A(2,2,0),B(0,2,0).设S(x,y,z),则x0,y0,z0.=(x-2,y-2,z),=(x,y-2,z),=(x-1,y,z),由|=|得=,故x=1.结合|=1得y2+z2=1,由|=2得x2+(y-2)2+z2=4,即y2+z2-4y+1=0,故y=,z=.于是S,=,=,=.(1)证明:易知=0,=0.故DSAS,DSBS,又ASBS=S,所以SD平面SAB.(2)设平面SBC的法向量a=(m,n,p),AB与平面SBC所成角为,则a,a,即a=0,a=0.又=,=(0,2,0),故取p=2得a=(-,0,2),因为=(-2,0,0).sin =|cos|=.故AB与平面SBC所成角的正弦值为.2.(xx江苏扬州期中)如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PA底面ABCD,AB=1,PA=2,E为PB的中点,点F在棱PC上,且PF=PC.(1)求直线CE与直线PD所成角的余弦值;(2)当直线BF与平面CDE所成的角最大时,求的值.解析(1)以A为坐标原点,AD,AB,AP所在直线为x轴,y轴,z轴建立空间直角坐标系(图略),则C(1,1,0),P(0,0,2),D(1,0,0),E,从而=,=(1,0,-2),cos=-,直线CE与PD所成角的余弦值为.(2)因为点F在棱PC上,且PF=PC,所以01,=,于是F(,2-2),=(,-1,2-2),设n=(x,y,z)为平面CDE的法向量,所以因为=(0,-1,0),=,所以取x=1,则n=(1,0,1),设直线BF与平面CDE所成的角为,则sin =|cos|=
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!