资源描述
3.1.1变化率问题,高二数学 选修1-1,问题1 气球膨胀率,在吹气球的过程中, 可发现,随着气球内空气容量的增加, 气球的半径增加得越来越慢. 从数学的角度, 如何描述这种现象呢?,气球的体积V(单位:L)与半径r (单位:dm)之间的函数关系是,若将半径 r 表示为体积V的函数, 那么,当空气容量V从0L增加到1L , 气球半径增加了,气球的平均膨胀率为,当空气容量V从1L增加到2 L , 气球半径增加了,气球的平均膨胀率为,随着气球体积逐渐变大,它的平均膨胀率逐渐变小,思考?,当空气容量从V1增加到V2时,气球的平均膨胀率是多少?,问题2 高台跳水,在高台跳水运动中, 运动员相对于水面的高度 h (单位:m)与起跳后的时间 t (单位:s) 存在函数关系,如果用运动员在某段时间内的平均速度 描述其运动状态, 那么:,在0 t 0.5这段时间里,在1 t 2这段时间里,平均速度不能反映他在这段时间里运动状态, 需要用瞬时速度描述运动状态。,计算运动员在 这段时间里的平均速度,并思考下面的问题:,(1) 运动员在这段时间里是静止的吗? (2) 你认为用平均速度描述运动员的运动状态有什么问题吗?,探 究:,现有南京市某年3月和4月某天日最高气温记载.,观察:3月18日到4月18日与4月18日到4月20日的温度,变化,用曲线图表示为:,(注: 3月18日为第一天),问题3:,问题1:“气温陡增”是一句生活用语,它的数学意义 是什么?(形与数两方面),问题2:如何量化(数学化)曲线上升的陡峭程度?,(1 )曲线上BC之间一段几乎成了“直线”,由此联想如何量化直线的倾斜程度。,(2)由点B上升到C点,必须考察yCyB的大小,但仅仅注意 yCyB的大小能否精确量化BC段陡峭程度,为什么?,在考察yCyB的同时必须考察xCxB,函数的本质在于一个 量的改变本身就隐含着这种改变必定相对于另一个量的改变。,(3)我们用比值 近似地量化B、C这一段曲线的陡峭程度,并称该比值为【32,34】上的平均变化率,(4)分别计算气温在区间【1,32】 【32,34】的平均变化率,现在回答问题1:“气温陡增”是一句生活用语,它的 数学意义是什么?(形与数两方面),定义:,平均变化率:,式子 称为函数 f (x)从x1到 x2的平均变化率.,令x = x2 x1 , y = f (x2) f (x1) ,则,理解: 1,式子中x 、 y 的值可正、可负,但 的x值不能为0, y 的值可以为0 2,若函数f (x)为常函数时, y =0 3, 变式,思考:,观察函数f(x)的图象 平均变化率 表示什么?,O,A,B,x,y,Y=f(x),x1,x2,f(x1),f(x2),x2-x1,f(x2)-f(x1),直线AB的斜率,练习:,1.甲用5年时间挣到10万元, 乙用5个月时间挣到2万元, 如何比较和评价甲、乙两人的经营成果?,2.已知函数 f (x) = 2 x +1, g (x) = 2 x, 分别计算在下列区间上 f (x) 及 g (x) 的平均变化率.,(1) 3 , 1 ; (2) 0 , 5 .,做两个题吧!,1 、已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+x,-2+y),则y/x=( ) A 、 3 B、 3x-(x)2 C 、 3-(x)2 D 、3-x,D,2、求y=x2在x=x0附近的平均变化率. 2x0+x,小结:,1.函数的平均变化率,2.求函数的平均变化率的步骤: (1)求函数的增量f=y=f(x2)-f(x1); (2)计算平均变化率,
展开阅读全文