高中数学《双曲线》课件2(16张PPT)(北师大版选修2-1)

上传人:青**** 文档编号:12209539 上传时间:2020-05-08 格式:PPT 页数:19 大小:641.50KB
返回 下载 相关 举报
高中数学《双曲线》课件2(16张PPT)(北师大版选修2-1)_第1页
第1页 / 共19页
高中数学《双曲线》课件2(16张PPT)(北师大版选修2-1)_第2页
第2页 / 共19页
高中数学《双曲线》课件2(16张PPT)(北师大版选修2-1)_第3页
第3页 / 共19页
点击查看更多>>
资源描述
,欢迎进入数学课堂,双曲线及其标准方程,第一课时,学习目标情境设置探索研究反思应用归纳总结作业,学习目标,1.掌握双曲线定义、标准方程及其求法;2.掌握焦点、焦距、焦点位置与方程关系;3.认识双曲线的变化规律.,情境设置,椭圆的定义把平面内与两个定点F1、F2的距离和等于常数(大于F1F2)的点轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。椭圆的标准方程x2/a2+y2/b2=1或x2/b2+y2/a2=1(ab0)根据椭圆的标准方程如何确定焦点的位置?哪个二次项的分母大,焦点就在相应的哪个坐标轴上。求椭圆标准方程的方法是什么?待定系数法求椭圆标准方程的步骤:确定焦点的位置,定方程的形式根据条件求a、b(关键),探索研究,如果把椭圆定义中的“距离之和”改为“距离之差的绝对值”曲线是什么?即“把平面内与两个定点F1、F2的距离的差的绝对值等于常数的点的轨迹”是什么?,双曲线的定义:把平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。,与椭圆定义对照,比较它们有什么相同点与不同点?双曲线定义中“差的绝对值”只说“差”行不行,为什么?椭圆标准方程是如何推导的?,双曲线的标准方程:,建立直角坐标系xOy,使x轴经过点F1、F2,并且点O与线段F1F2的中点重合.设M(x,y)是双曲线上任意一点,双曲线的焦距为2c(c0),那么,焦点F1、F2的坐标分别是(c,0)、(c,0).又设M与F1、F2的距离的差的绝对值等于常数2a.由定义可知,双曲线就是集合,将方程化简得(c2a2)x2a2y2=a2(c2a2).由双曲线的定义可知,2c2a,即ca,所以c2a20,令c2a2=b2,其中b0,代入上式得(a0,b0).,双曲线的标准方程的形式,形式一:(a0,b0)说明:此方程表示焦点在x轴上的双曲线.焦点是F1(c,0)、F2(c,0),这里c2=a2+b2.形式二:(a0,b0)说明:此方程表示焦点在y轴上的双曲线,焦点是F1(0,c)、F2(0,c),这里c2=a2+b2.,例1求适合下列条件的双曲线的标准方程a=4,c=5,焦点在x轴上;x2/16y2/91焦点为(-5,0),(5,0),且b=3x2/16y2/91a=4,经过点;x2/9+y2/161焦点在y轴上,且过点x2/9+y2/161,例2(课本例)已知双曲线两个焦点的坐标为F1(5,0)、F2(5,0),双曲线上一点P到F1、F2的距离的差的绝对值等于6,求双曲线的标准方程.,求双曲线标准方程的方法是什么?待定系数法求双曲线标准方程的步骤:确定焦点的位置,定方程的形式根据条件求a、b(关键)(c2=a2+b2),例3、证明椭圆x2/25y2/91与双曲线x215y215的焦点相同。,例4、已知方程表示焦点在y轴上的双曲线,求k的取值范围,随堂练习,已知方程表示双曲线,则实数m的取值范围是。m2或m1求适合下列条件的双曲线的标准方程a=4,b=3,焦点在x轴上;x2/16y2/91焦点为(0,6),(0,6),经过点(2,5)x2/16+y2/201,焦点在x轴上,经过点,方法1:分类讨论设方程x2/a2y2/b2=1(a0,b0)点的坐标代入得a2=1,b2=3设方程x2/b2+y2/a2=1(a0,b0)点的坐标代入无解方法2:设方程mx2+ny2=1(mn0)点的坐标代入得m=1,n=1/3,归纳总结,数学思想方法:数形结合,待定系数法,分类讨论掌握双曲线的定义及其标准方程的推导,并利用焦点、焦距与方程关系确定双曲线方程.,预习提纲在A处听到爆炸声的时间比在B处晚2s,说明了什么?根据题意怎样确定爆炸点的位置?为什么?如果A、B两点同时听到爆炸声,那么爆炸点应在怎样的曲线上?,同学们,来学校和回家的路上要注意安全,同学们,来学校和回家的路上要注意安全,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!