资源描述
学案24古典概型 班级_ 姓名_导学目标: 1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率自主梳理1基本事件有如下特点:(1)任何两个基本事件是_的(2)任何事件(除不可能事件)都可以表示成基本事件的和2一般地,一次试验有下面两个特征(1)有限性试验中所有可能出现的基本事件只有有限个;(2)等可能性每个基本事件出现的可能性相同。 称这样的概率模型为古典概型判断一个试验是否是古典概型,在于该试验是否具有两个特征:有限性和等可能性3如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是_;如果某个事件A包括的结果有m个,那么事件A的概率P(A)_.自我检测1若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P在直线xy5下方的概率为 ()A. B. C. D.2一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个,其两面涂有油漆的概率是 ()A. B. C. D.3有100张卡片(编号从1号到100号),从中任取1张,取到卡号是7的倍数的概率为_4三张卡片上分别写上字母E,E,B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为_5在平面直角坐标系中,从五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,这三点能构成三角形的概率是_(用分数表示).探究点一基本事件的概率例1投掷六个面分别记有1,2,2,3,3,3的两颗骰子(1)求所出现的点数均为2的概率;(2)求所出现的点数之和为4的概率【变式1】一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球问:(1)共有多少个基本事件?(2)摸出的两只球都是白球的概率是多少?探究点二古典概型的概率计算例2班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;(2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求独唱和朗诵由同一个人表演的概率探究点三古典概型的综合问题轿车A轿车B轿车C舒适型100150z标准型300450600例3汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率【变式3】为了了解中华人民共和国道路交通安全法在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本求该样本平均数与总体平均数之差的绝对值不超过0.5的概率探究点四 分类讨论思想的应用例4甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜你认为此游戏是否公平,说明你的理由【课后练习与提高】1将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2bxc0有实根的概率为() A. B. C. D.2连掷两次骰子分别得到点数m、n,则向量(m,n)与向量(1,1)的夹角90的概率是()A. B. C. D.3设集合A1,2,B1,2,3,分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线xyn上”为事件Cn(2n5,nN),若事件Cn的概率最大,则n的所有可能值为()A3 B4 C2,5 D3,44在一个袋子中装有分别标注数字1,2,3,4,5的五个小球现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()A. B. C. D.5在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目若选到男教师的概率为,则参加联欢会的教师共有_人6在集合x|x,n1,2,3,10中任取一个元素,所取元素恰好满足方程cos x的概率是_7现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为_8某商场举行抽奖活动,从装有编号0,1,2,3四个小球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖 (1)求中三等奖的概率;(2)求中奖的概率9.(2014北京)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)10已知实数a,b2,1,1,2 (1)求直线yaxb不经过第四象限的概率;(2)求直线yaxb与圆x2y21有公共点的概率
展开阅读全文