《平行线的证明》全章复习与巩固(基础)知识讲解

上传人:gbs****77 文档编号:10321268 上传时间:2020-04-11 格式:DOC 页数:6 大小:220.50KB
返回 下载 相关 举报
《平行线的证明》全章复习与巩固(基础)知识讲解_第1页
第1页 / 共6页
《平行线的证明》全章复习与巩固(基础)知识讲解_第2页
第2页 / 共6页
《平行线的证明》全章复习与巩固(基础)知识讲解_第3页
第3页 / 共6页
点击查看更多>>
资源描述
让更多的孩子得到更好的教育平行线的证明全章复习与巩固(基础)知识讲解撰稿:孙景艳 责编:吴婷婷 【学习目标】1 了解定义及命题的概念与构成,并能通过证明或举反例判定命题的真假;2. 区别平行线的判定与性质,并能灵活运用;3. 理解并能灵活运用三角形的内角和定理及其推论.【知识网络】【要点梳理】要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题. 要点诠释:(1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项. (2)正确的命题称为真命题,不正确的命题称为假命题. (3)公认的真命题叫做公理. (4) 经过证明的真命题称为定理.3.证明: 在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明. 要点诠释:(1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论(2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可要点二、平行线的判定与性质1平行线的判定判定方法1:同位角相等,两直线平行判定方法2:内错角相等,两直线平行判定方法3:同旁内角互补,两直线平行要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180 推论:(1)三角形的一个外角等于和它不相邻的两个内角的和 (2)三角形的一个外角大于任何一个和它不相邻的内角要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.【典型例题】类型一、定义、命题及证明1.指出下列命题的条件和结论,并判断命题的真假,如果是假命题,请举出反例. 如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.【答案与解析】解:条件:等腰三角形的两条边长为5和7 结论:等腰三角形的周长为17是假命题;反例:当腰长为7,底边长为5时,周长为19【总结升华】本题考查了命题与定理的相关知识关键是明确命题与定理的组成部分,会判断命题的题设与结论举一反三:【变式1】某工程队,在修建兰定高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程( ). A直线的公理 B直线的公理或线段最短公理 C线段最短公理 D平行公理【答案】B【变式2】下列命题真命题是( ) .A互补的两个角不相等 B相等的两个角是对顶角C有公共顶点的两个角是对顶角 D同角或等角的补角相等【答案】D2.叙述并证明三角形内角和定理要求写出定理、已知、求证,画出图形,并写出证明过程【思路点拨】欲证明三角形的三个内角的和为180,可以把三角形三个角转移到一个平角上,利用平角的性质解答【答案与解析】定理:三角形的内角和是180;已知:ABC的三个内角分别为A,B,C;求证:A+B+C=180证明:如下图,过点A作直线MN,使MNBCMNBC,B=MAB,C=NAC(两直线平行,内错角相等)MAB+NAC+BAC=180(平角定义),B+C+BAC=180(等量代换)即A+B+C=180【总结升华】本题考查的是三角形内角和定理,即三角形的内角和是180类型二、平行线的判定与性质3.(佳木斯中考)如图所示,请你填写一个适当的条件:_,使ADBC【思路点拨】欲证ADBC,结合图形,故可按同位角相等、内错角相等和同旁内角互补两直线平行来补充条件【答案】FADFBC,或ADBCBD,或ABC+BAD180.【解析】 解:本题答案不唯一,如:利用“同位角相等,两直线平行”,可添加条件FADFBC;利用“内错角相等,两直线平行”,可添加条件ADBCBD;利用“同旁内角互补,两直线平行”,可添加条件ABC+BAD180【总结升华】这是一道开放性试题,分清题设和结论:结论: ADBC,题设可根据平行线的判定方法,逐一寻找即可.4.如图,已知ADE B,1 2,那么CDFG吗?并说明理由.【答案与解析】解:平行,理由如下:因为ADE=B,所以DEBC(同位角相等,两直线平行),所以1=BCD(两直线平行,内错角相等).又因为1=2(已知),所以BCD=2.所以CDFG(同位角相等,两直线平行).【总结升华】反复应用平行线的判定与性质,见到角相等或互补,就应该想到判断直线是否平行,见到直线平行就应先想到角相等或角互补.【高清课堂:相交线与平行线单元复习 403105经典例题3】举一反三:【变式】如图,已知1+2180,3B,试判断AED与ACB的大小关系,并说明理由【答案】AED=ACB,理由如下:12180,又14180,24.ABEF(内错角相等,两直线平行).53.又3=B,5B.DEBC(同位角相等,两直线平行).AED=ACB(两直线平行,同位角相等).类型三、三角形的内角和定理及推论5.请你利用“三角形内角和定理”证明“四边形的内角和等于360”.四边形ABCD如图所示.【思路点拨】将四边形转化为三角形去解决.【答案与解析】证明:如下图,连接AC B+BAC+ACB=180, D+DAC+ACD=180, (B+BAC+ACB)+(D+DAC+ACD)=180+180 B+D+(BAC+DAC)+(ACB+ACD)=360 B+C+BAD+BCD=360 即四边形ABCD的内角和等于360.【总结升华】把不熟悉的多边形分成熟悉的三角形,利用三角形的内角和推导多边形的内角和是解题的关键,同理可以得到n边形的内角和公式为:(n2)180.6.已知:如图,在ABC中,DEBC,F是AB上的一点,FE的延长线交BC的延长线于点G求证:EGHADE【答案与解析】证明: DEBC, ADEB EGHB,EGHADE(等量代换)【总结升华】“三角形的内角和定理推论2”是证明角不等关系的重要依据之一举一反三:【变式】在ABC中,A=50,B=70,则C的外角等于_.【答案】120地址:北京市西城区新德街20号4层 电话:01082025511 传真:01082079687 第6页 共6页
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!