福建师范大学21秋《近世代数》在线作业二答案参考76

上传人:住在****他 文档编号:90433324 上传时间:2022-05-15 格式:DOCX 页数:21 大小:23.81KB
返回 下载 相关 举报
福建师范大学21秋《近世代数》在线作业二答案参考76_第1页
第1页 / 共21页
福建师范大学21秋《近世代数》在线作业二答案参考76_第2页
第2页 / 共21页
福建师范大学21秋《近世代数》在线作业二答案参考76_第3页
第3页 / 共21页
点击查看更多>>
资源描述
福建师范大学21秋近世代数在线作业二答案参考1. 对下列三个线性规划问题,分别写出其对偶问题,并加以比较: (1)max s.t(i=1,2,m), xj0(j=1,2,n);对下列三个线性规划问题,分别写出其对偶问题,并加以比较:(1)maxs.t(i=1,2,m),xj0(j=1,2,n);(2)maxst(i=1,2,m),xj0(j=1,2,n),xsi0(j=1,2,m);(3)st(i=1,2,m),xj0(j=1,2,n),xsi,xai0(i=1,2,m),其中M表示充分大的正数它们的对偶问题都是 min s.t(j=1,2,n), u10(i=1,2,m) 注意到(1),(2),(3)三个问题是等价的由此看出:对任何线性规划问题,不管其形式如何变化,其对偶问题是惟一的 2. 甲、乙两车床生产同一种零件现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm)为: 甲:15.0,1甲、乙两车床生产同一种零件现从这两车床产生的产品中分别抽取8个和9个,测得其外径(单位:mm)为:甲:15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8乙:15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8假定其外径都服从正态分布,问乙车床的加工精度是否比甲车床的高(=0.05)?3. 设f()4,0,1,取h02,试用分段线性插值函数和分段三次Hermite插值计算f(044)的估计值。设f()4,0,1,取h02,试用分段线性插值函数和分段三次Hermite插值计算f(044)的估计值。正确答案:取j-104j06则f(j-1)04400256f(j)06401296则由线性插值得rnrn 由两点三次Hermite插值公式计算得rnrn 真值f(044)003748096显然Hermite插值比线性插值的精度高。取j-104,j06,则f(j-1)04400256,f(j)06401296,则由线性插值得由两点三次Hermite插值公式计算得真值f(044)003748096,显然Hermite插值比线性插值的精度高。4. 计算第一类曲线积分Lf(x,y)ds时,要注意哪些问题?计算第一类曲线积分Lf(x,y)ds时,要注意哪些问题?(1)如果积分弧段L用显式方程y=y(x)(axb)给出,则可把它当作特殊的参数方程x=t,y-y(t)(atb)的情形来处理但此时有一点要注意:有些可用参数方程统一表示的曲线(特别如闭曲线),若用显式方程y=y(x)(或x=x(y)来表示,也许需要分弧段表示比如圆L:x=cost,y=sint(0t2),若用显式方程表示则需分成上半圆L1:(-1x1)和下半圆L2:(-1x1),这时计算在L上的第一类曲线积分就要分别计算在L1和L2上的第一类曲线积分,然后把结果相加 如果积分弧段L用极坐标方程=()()表示,则可把它看作是特殊的参数方程 x=()cos, y=()sin() 的情形处理容易算得,此时 (2)如同重积分那样,也可以利用对称性来化简第一类曲线积分的计算,有关结论与重积分的情况类似比如,若积分弧段L关于x轴对称,而被积函数f(x,y)关于y是奇函数,则Lf(x,y)ds=0;若f(x,y)关于y是偶函数,则Lf(x,y)ds=2L1f(x,y)ds,其中L1是L上的y0的那一部分弧段又若L关于直线y=x对称,则Lf(x,y)ds=Lf(y,x)ds,等等读者可类比得出其他情况下的结论 计算第一类曲线积分时,还可以利用积分弧段L的方程来化简被积函数(计算第二类曲线积分时也可以这样处理)由于积分变量x,y取在L上,故x,y满足L的方程,因此,需要时可将L的方程代入被积函数,达到化简的目的,这是计算曲线积分(以及以后的曲面积分)特有的方法 5. 关于函数极限和数列极限的关系,有哪些应用?关于函数极限和数列极限的关系,有哪些应用?我们有下述定理给出的更强的结果: Heine归并定理 极限存在的充分必要条件是:对任何数列xn,满足xnx0(n)且xnx0(nN+),有存在. 这个性质称为函数极限的归并性,它有以下一些应用: (1)证明极限不存在,只需找出一个数列xn:xnx0(n),且xnx0(nN+),数列f(xn)发散;或找出两个数列xn和xn:xnx0,xnx0(n),xnx0,xnx0(nN+),数列f(xn)和f(xn)有不同的极限 (2)为求极限,可以先找一个数列xn:xnx0(n),xnx0(nN+),求出数列f(xn)的极限:.然后,再证明. 6. 试将下列微分方程组化为等价的微分方程,并求出方程的解:试将下列微分方程组化为等价的微分方程,并求出方程的解:由第2式得x=4y+y,再取导数有x=4y+y将得到的x,x代入第1式便得4y+y=3(4y+y)-10y,y+y-2y=0 再利用第2式及初值条件知y(0)=8-4=4 最后得到等价的微分方程为 y+y-2y=0,y(0)=1,y(0)=4 上面二阶方程的特征方程为2+-2=(+2)(-1)=0,有根=-2,1 方程的通解为y=c1e-2t+c2et满足初值条件的解为y=-e-2t+2et及x=-2e-2t+10et$由第1式有,代入第2式得 -x+tx+t2x=-2x+x+txt2x=0 等价的微分方程为x=0 它有通解x=c1t+c2, 或由第2式有,代入第1式可得 ,t2(ty+2y)=0 等价的微分方程为ty+2y=0 令z=y,可化为tz+2z=0,有通解为进而 7. 设向量的始点为P1(2,0,-1),方向余弦中的;,求向量的坐标表示式及终点坐标设向量的始点为P1(2,0,-1),方向余弦中的;,求向量的坐标表示式及终点坐标设终点P2(x,y,z)=(x-2)i+(y-0)j+(z+1)k 于是,终点坐标是 向量的坐标表示式是 8. 证明:函数在原点处的两个偏导数都不存在,但函数在原点有极大值证明:函数在原点处的两个偏导数都不存在,但函数在原点有极大值记z=f(x,y),则 可知 因此不存在,即z关于x的偏导数,在点(0,0)处不存在 相仿可证z关于y的偏导数在点(0,0)处不存在 由于f(0,0)=1,当x2+y20时, 可知在原点处取得极大值关于z在原点处的两个偏导数,直接由定义可验证不存在,z在原点处极值问题可以由极值的定义判定 9. 甲、乙、丙、丁四人争夺乒乓球单打冠军,已知情况如下: 前提:(a)若甲获冠军,则乙或丙获亚军; (b)若乙获亚军,甲、乙、丙、丁四人争夺乒乓球单打冠军,已知情况如下:前提:(a)若甲获冠军,则乙或丙获亚军;(b)若乙获亚军,则甲不能获冠军;(c)若丁获亚军,则丙不能获亚军;事实是:(d)甲获冠军;结论是:(e)丁没有获亚军。请证明此结论是有效结论。证明如果令 P:甲获冠军; Q:乙获亚军; R:丙获亚军; S:丁获亚军。 由题意可知,需证明 P(QR),QP,SR, 用间接证明法: S P(附加前提) SR P R T, P P P(QR) P QR T, (QR)(RQ) T QR T QP P Q T, (11)R T, (12)RR(矛盾) T,(11) 10. 求微分方程y+2y&39;-3y=2ex-1的通解求微分方程y+2y-3y=2ex-1的通解11. 0n|sinx|dx (n是自然数)0n|sinx|dx(n是自然数)0n|sinx|dx k=0n-1k(k+1)|sinx|dx 令 x=k+t 则 k(k-1)|sinx|dx=0(k+t)sinxtdt =(2k+1) 原式=k=0n-1(2k+1)=n2 解2 令x=n-t,则 0n|sinx|dx=0n(n-t)|sint|dt =n0n|sint|dt-0nt|sint|dt 从而有 12. 设ARnn,则存在有限个Givens矩阵(或Householder矩阵)的乘积Q,使得QAQT为上Hessenberg矩阵设ARnn,则存在有限个Givens矩阵(或Householder矩阵)的乘积Q,使得QAQT为上Hessenberg矩阵仅讨论使用Givens矩阵的情形 第1步:设A=(aij)nn,记(0)=(a21,an1)TRn-1,当(0)=0时转入 第2步;(0)0时,构造有限个Givens矩阵的乘积T0,使得 T0/(0)=|(0)|e1 (e1Rn-1) 记,则有 = 第2步:A(1)R(n-1)(n-1),记Rn-2,当(1)=0时转入第3步;(1)0时,构造有限个Givens矩阵的乘积T1,使得 T1/(1)=|(1)|e1 (e1Rn-2) 记,则有 第3步:A(2)R(n-2)(n-2), 第n-2步:,记 当(n-3)=0时结束;(n-3)0时,构造Givens矩阵Tn-3,使得 Tn-3(n-3)=|(n-3)|e1 (e1R2) 记,则有 最后,构造正交矩阵 可使QAQT为上Hessenberg矩阵 证毕 13. 若一元函数(x)在a,b上连续,令 f(x,y)=(x),(x,y)D=a,b(-,+) 试讨论f在D上是否连续?是否一致连若一元函数(x)在a,b上连续,令f(x,y)=(x),(x,y)D=a,b(-,+)试讨论f在D上是否连续?是否一致连续?f(x,y)在D上连续且一致连续 因为(x)在闭区间a,b上连续,所以(x)在a,b上一致连续因而对,当x1,x2a,b,|x1-x2|时,有 |(x1)-(x2)| 由于f(x,y)=(x)与y无关,所以对,当|x1-x2|,|y1-y2|(或(P1,P2)时,就有 |f(x1,y1)-f(x2,y2)|=|(x1)-(x2)| 故f(x,y)在D上一致连续 14. 求下列函数f(x)的Dini导数:求下列函数f(x)的Dini导数:D+f(0)=D+f(0)=D-f(0)=D-f(0)=+$D+f(0)=D+f(0)=1,D-f(0)=D-f(0)=-1$对xQ,D+f(x)=0,D+f(x)=+,D-f(x)=-,D-f(x)=0;对,D+f(x)=D-f(x)=0,D+f(x)=-,D-f(x)=+.$由于在区间(1/(2n+2),1/2n中cos(1/x)以及sin(1/x)可取到从-1到+1之间的一切值,故知 类似地,有D+f(0)=a,D-f(0)=a,D-f(0)=b 15. 求经过直线并且分别满足下列条件的平面方程: (1)经过坐标原点; (2)与x轴平行; (3)与平面2x-y+5z+2=0垂直求经过直线并且分别满足下列条件的平面方程:(1)经过坐标原点;(2)与x轴平行;(3)与平面2x-y+5z+2=0垂直经过给定直线的平面束方程为 4x-y+3z-1+(x+5y-z+2)=0, 即 (4+)x+(-1+5)y+(3-)z+(2-1)=0 (1)如果有平面经过原点,则2-1=0,得到,故所求的平面方程为 9x+3y+5z=0 (2)如果平面束中某平面与x轴平行,则它的法线向量4+,-1+5,3-)与向量l=1,0,0垂直,从而有 4+,-1+5,3-1,00=4+=0, 因此=-4,所求的平面方程为 -21y+7x-9=0 (3)如果平面束中某平面与所给的平面垂直,则有 4+,-1+5,3-2,-1,5)=24-8=0, 因此=3,所求的平面方程为 7x+14y+5=0 16. 曲线( ) (A)没有渐近线 (B)仅有水平渐近线 (C)仅有铅直渐近线 (D)既有水平渐近线又有铅直渐近线曲线()(A)没有渐近线(B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线D直线x=0及y=1分别是该曲线的铅直渐近线与水平渐近线17. 求两平面1:2x-y+z=7;2:x+y+2z=11之间的夹角求两平面1:2x-y+z=7;2:x+y+2z=11之间的夹角+1=2i-j+k;=i+j+2k;=21+(-1)1+12=3 ; 记 18. 设平面上直线l的方程为AxByc=0,求平面对于直线l的反射公式。设平面上直线l的方程为Ax+By+c=0,求平面对于直线l的反射公式。19. 指出共鸣定理中空间完备性条件不能去掉指出共鸣定理中空间完备性条件不能去掉设为l2中除有限多个分量外皆为零的向量组成的子空间,即 当且仅当存在k0使kk0有k=0,则不是l2的闭线性子空间,从而不是完备的定义Tn:使对每个x=有Tnx=(0,0,nn,0,),则 Tnx=n|n|nx,Tnn;又对第n个分量为1其余为0的向量en有 Tn=TnenTnen=n因此Tn=n,于是有但对任意,存在k0使kk0有k=0,于是有Tkx=,从而 这表明共鸣定理的结论对不成立 20. 设f(x)在a,b上连续,在(a,b)内可导,且f(a)=0,,试证存在点(a,b),使f&39;()=0设f(x)在a,b上连续,在(a,b)内可导,且f(a)=0,,试证存在点(a,b),使f()=0由于f(x)在a,b上可导,可知f(x)在a,b上必定连续,设在(a,b上f(x)0,则由定积分的不等式性质可知 与已知矛盾,这表明在(a,b上不可能总有f(x)0,相仿可证在(a,b上不可能总有f(x)0,因此必定存在一点c(a,b,使 f(c)=0在a,c上对f(x)利用罗尔定理可知至少存在一点,使f()=0由于f(x)在a,b上可导,f(a)=0,如果能找到一点c(a,b,使f(c)=0,则利用罗尔定理可证所给命题,由(1)可知c必定存在 21. (1)在一棵有两个2次结点、四个3次结点、其余为树叶的无向树中,应该有几片树叶? (2)画出两棵不同构的满足条件(1)在一棵有两个2次结点、四个3次结点、其余为树叶的无向树中,应该有几片树叶?(2)画出两棵不同构的满足条件(1)的结点次数的无向树T1,T222. 判别式小于0的二次多项式的虚根是两个互相共轭的复数。( )判别式小于0的二次多项式的虚根是两个互相共轭的复数。( )正确答案: 23. 若两个线性空间V1与V2同构,则它们的维数相等. 若两个线性空间V1与V2的维数相等,则这两线性空间必同构?若两个线性空间V1与V2同构,则它们的维数相等.若两个线性空间V1与V2的维数相等,则这两线性空间必同构?例 复数集C与实数集R作为有理数域Q上的线性空间,有dimC=dimR=,但C与R显然不能同构24. 求与直线x9y1=0垂直的曲线y=x33x25的切线方程求与直线x+9y-1=0垂直的曲线y=x3-3x2+5的切线方程因为曲线y=x3-3x2+5上任一点处切线的斜率为 y=3x2-6x 而直线x+9y-1=0的斜率为-1/9依题意有 3x2-6x=9 解之得x1=-1,x2=3故可求得切点 对应于该两切点的切线斜率为 k1=y|x=-1=9及k2=y|x=3=9故两切线方程为 y-1=9(x+1) 及y-5=9(x-3) y-9x-1=0及y-9x+22=0 25. 求下列函数的,及 (3)z=cos2(2x+3y); (4)z=arcsin(xy)求下列函数的,及(3)z=cos2(2x+3y);(4)z=arcsin(xy)(3) =-4sin(2x+3y)cos(2x+3y)=-2sin(4x+6y) , (4), , 事实上,根据函数表达式中自变量x,y的对称地位(即x,y互换,表达式不变),只要在,的表达式中将x,y互换就可以分别得到,的表达式 26. 求出等于下列表达式的一个二项式系数求出等于下列表达式的一个二项式系数运用Pascal公式,可得 还可运用组合学方法证明。这只要考虑对集合a1,a2,an,b1,b2,b3的k-组合以如下方式形成:从n个a中取k个a,再从3个b中取0个b;或者从n个a中取k-1个a,再从3个b中取1个b;或者从n个a中取k-2个a,再从3个b中取2个b;或者从n个a中取k-3个a,再从3个b中取3个b。因此 27. 求下列微分方程边值问题的格林函数:求下列微分方程边值问题的格林函数:先求边值问题y=0,y(0)=1,y(1)=2的解方程有基解组y1=1,y2=x通解为y=c1+c2x代入边值条件有解y=1+2x设边值问题y=f(x),y(0)=0,y(1)=0的格林函数为 由齐次方程边值条件得a1(t)=0,b2(t)=0 利用结果,有 解得b1(t)=-t,a2(t)=-1 即格林函数为 解为最后,原非齐次边值问题的解为 $齐次方程的两个线性无关解为,y2=1,令其格林函数为 利用p0(x)=x2有 由边值条件y(1)=y(1)得b1(t)+b2(t)=-b1(t)又由当x0时y(x)有界条件知,应取a1(t)=0 于是有b1(t)=-1,b2(t)=1+,格林函数为 $齐次方程是欧拉方程,可令y=xK,代入得K(K-1)+2K=K(K+1)=0,有通解y=c1+c2x-1用常数变易法,令y=c1(x)+c2(x)x-1,则y=c1+c2x-1-c2x-2,设c1+c2x-1=0,于是y=-c2x-2,y=-c2x-2+2c2x-3将其代入方程得 x2y+2xy=-c2+2c2x-1-2c2x-1=-c2=f(x), 而由c1+c2x-1=0又有c1=-c2x-1=x-1f(x),最后得非齐次方程的特解其通解为利用边值条件有c2=-c1=于是有可定义格林函数 边值问题的解为 ,(1x3) 28. 叙述梯度、散度、旋度的定义及其在直角坐标下的表示式叙述梯度、散度、旋度的定义及其在直角坐标下的表示式29. 求直线l1:与直线l2:的公垂线方程求直线l1:与直线l2:的公垂线方程根据题意知公垂线的方向向量可取 , l1与公垂线所确定平面1的法向量为 , 点(9,-2,0)在平面1上,故1的方程为 -16(x-9)-27(y+2)-17(z-0)=0, 即 16x+27y+17z-90=0. 同理,l2与公垂线所确定平面H2的法向量为 , 点(0,-7,7)在平面2上,故2的方程为 58(x-0)+6(y+7)+31(z-7)=0, 即 58x+6y+31z-175=0. 1与2的交线即为l1与l2的公垂线,故公垂线方程为 30. 若n阶方阵A,B满足AB=A+B,则(A-E)-1=_.若n阶方阵A,B满足AB=A+B,则(A-E)-1=_.B-E.31. f(x)=sin(x2),则f(x)在x=0处的极限不存在。( )f(x)=sin(x2),则f(x)在x=0处的极限不存在。( )正确答案: 32. 设f(x)在(,)内可导,且F(x)f(x21)f(1x2),证明:F(1)F(1)设f(x)在(,)内可导,且F(x)f(x21)f(1x2),证明:F(1)F(1)正确答案:证明:F(x)=f(x21)f(1x2)f(x)在(,)内可导F(x)为可导函数F(x)f(x21)2x+f(1x2)(2x)2xf(x21)f(1x2)F(1)2f(0)f(0)0F(1)(2)f(0)f(0)0F(1)F(1)33. 求矩阵A特征值的QR迭代时,具体收敛到哪种矩阵是由A的哪种性质决定的?求矩阵A特征值的QR迭代时,具体收敛到哪种矩阵是由A的哪种性质决定的?设ARnn,且A有完备的特征向量组如果A的等模特征值中只有实重特征值或多重复的共轭特征值,则由QR算法产生的Ak本质收敛于分块上三角矩阵(对角块为一阶和二阶子块)且对角块中每一个22子块给出A的一对共轭复特征值,每一个一阶对角子块给出A的实特征值,即 其中m+2l=n,BI(i=1,2,l)为22子块,它给出A的一对共轭特征值 34. 求曲面M:z=axy(a0)上两坐标曲线x=x0与y=y0之间的夹角求曲面M:z=axy(a0)上两坐标曲线x=x0与y=y0之间的夹角正确答案:解设曲面M的参数表示为x(xy)=(xyaxy)则xx=(10ay) xy=(01ax)E=xx.xx=1+a2y2 G=xy.xy=1+a2x2F=xx.xy=a2xy第1基本形式为I=Edx2+2Fdxdy+Gdy2=(1+a2y2)dx2+2a2xy dxdy+(1+(a2x2)dy2设坐标曲线x=x0的方向为(01)y=y0的方向(10)则两坐标曲线x=x0与y=y0的夹角的余弦为rn故rn解设曲面M的参数表示为x(x,y)=(x,y,axy),则xx=(1,0,ay),xy=(0,1,ax),E=xx.xx=1+a2y2,G=xy.xy=1+a2x2,F=xx.xy=a2xy第1基本形式为I=Edx2+2Fdxdy+Gdy2=(1+a2y2)dx2+2a2xydxdy+(1+(a2x2)dy2设坐标曲线x=x0的方向为(0,1),y=y0的方向(1,0),则两坐标曲线x=x0与y=y0的夹角的余弦为故35. 求解下列有界变量线性规划问题: (1)min x0=3x1+4x2-2x3-5x4+3x5+2x6-x7, s.t.x1+x4+2x5-x6+x7=13, x2-x4求解下列有界变量线性规划问题:(1)min x0=3x1+4x2-2x3-5x4+3x5+2x6-x7,s.t.x1+x4+2x5-x6+x7=13,x2-x4+x5+x6+2x7=9,x3+2x4+2x5+2x6-x7=5,0xj5(j=1,2,7);(2)min f=x1+2x2+x3-x4+2x5+x6-x7,s.t.x1+2x4-2x5+x6-8x7=0,x2+x4+x5-x6+x7=11,x3+3x4-x5-2x6+2x7=6,0xj4(j=1,2,7)(1)x*=(1,0,0,3,2,0,5)T,x0*=-11. (2) 36. R2与样本相关系数有什么关系?R2与样本相关系数有什么关系?如记x1,xn与y1,yn)的样本相关系数为rxy,即 则有关系R2=(rxy)2 事实上,因 所以 因此R2=1,对应着|rxy|=1,x与y有最大线性相关;R2=0,x与y无线性相关关系但用rxy说明回归直线的拟合程度需慎重,例如当rxy=0.5时,只能推出R2=0.25,也就是说回归的变异只能解释响应变量变异的,而不是一半! 37. 若函数|f(x)|在点x=x0处可导,则f(x)在点x=x0处必可导;若函数|f(x)|在点x=x0处可导,则f(x)在点x=x0处必可导;错误例如,可 见|f(x)|在点x=0处可导,而f(x)在点x=0处不可导 38. 设f(x)=|x(1x)|,则( ) Ax=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点 Bx=0不是f(x)的极值点,但(设f(x)=|x(1-x)|,则()Ax=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点Bx=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点Cx=0是f(x)的极值点,(0,0)也是曲线y=f(x)的拐点Dx=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点C39. n阶微分方程F(x,y,y&39;,y(n)=0的通解应具有y=_的形式n阶微分方程F(x,y,y,y(n)=0的通解应具有y=_的形式y(x,c1,cn);40. 函数y=x2+4x-5在区间(-6+6)内满足( ) A先单调下降再单调上升 B单调下降 C先单调上升再单调下降 D函数y=x2+4x-5在区间(-6+6)内满足()A先单调下降再单调上升B单调下降C先单调上升再单调下降D单调上升A41. 设随机变量XN(0,2),求E(Xn),n1设随机变量XN(0,2),求E(Xn),n1令,YN(0,1), 当n为奇数时,被积函数是奇函数,所以E(Xn)=0 当n为偶数时,有 因而 42. 设M=1,2,3),与是M的置换:,求-1,-1设M=1,2,3),与是M的置换:,求-1,-1 43. 一个mn的棋盘只有白色与黑色两种方格,其中m和n都是奇数。如果黑色方格比白色方格多一个方格,试证明:当棋盘一个mn的棋盘只有白色与黑色两种方格,其中m和n都是奇数。如果黑色方格比白色方格多一个方格,试证明:当棋盘上恰有一个黑方格禁止放子,那么该棋盘有一个用多米诺牌的完美覆盖。设禁止放子的黑方格位于第i行第j列上。下面分别就i与j的不同奇偶性情况进行讨论。 (1)i与j同为偶数或同为奇数。此时,将棋盘划分为如图7.14所示的区域A1(为i(j-1)的区域)、区域A2(为(m-i)j的区域)、区域A3(为(i-1)(n-j+1)的区域)、区域A4(为(m-i+1)(n-j)的区域)以及禁止放子的黑方格(图中阴影部分)。由于A1,A2,A3与A4无论i与j同为偶数还是同为奇数,总有偶数边长,故可知,它们都有完美覆盖。 (2)i与j为一奇一偶。此时,如果不要求白格与黑格的位置,则不一定存在完美覆盖,如在图7.15中,第1行中第2格是禁止放子的黑格。如果要求棋盘行和列之间都是黑白格相间,则i与j的一奇一偶情况不会出现。事实上,不妨设i为奇,j为偶。由于黑格比白格多一个,故第1行上第1个格是黑格。则第i行第1个格是黑格,从而第i行上只有偶数列上方格是白格。 44. 某种动物从出生而活到20岁的概率是0.8,活到25岁的概率是0.4,则现龄是20岁的这种动物活到25岁的概率是0.6某种动物从出生而活到20岁的概率是0.8,活到25岁的概率是0.4,则现龄是20岁的这种动物活到25岁的概率是0.6参考答案:错误错误45. 设D=0,10,1,证明函数 在D上部可积。设D=0,10,1,证明函数在D上部可积。对D作任意的分割T:1,2,n,则f(x,y)关于分割的上和与下和分别为 其中, 所以 故f(x,y)在D上不可积。 46. 一平面通过点(2,1,0)且与各坐标轴的截距相等,求此平面的方程一平面通过点(2,1,0)且与各坐标轴的截距相等,求此平面的方程设所求平面在三个坐标轴上的截距为a,则平面的截距式方程为 又因为平面过点(2,1,0),得a=3, 所以平面方程为 x+y+z-3=0 47. 设(X1,X2,Xn)是取自正态总体N(,1)的一个样本,其中未知,-+试求k+C的双侧1-置信区间,其中k,C是常设(X1,X2,Xn)是取自正态总体N(,1)的一个样本,其中未知,-+试求k+C的双侧1-置信区间,其中k,C是常数,k0由于已知,选用样本函数的分布48. 从总体X中抽取容量为80的样本,频数分布如下表: 区 间 left(0,frac14 right left(frac从总体X中抽取容量为80的样本,频数分布如下表:区 间left(0,frac14 rightleft(frac14,frac12 rightleft(frac12,frac34 rightleft(frac34,1 right频 数6182036试在显著性水平=0.025下检验总体x的概率密度为是否可信?H0: 列表计算如下(n=80): k 区间 fk pk npk fk-npk (fk-npk)2/npk 1 left( 0,frac14 right 6 0.0625 5 1 0.20 2 left( frac14,frac12 right 18 0.1875 15 3 0.60 3 left( frac12,frac34 right 20 0.3125 25 -5 1.00 4 left( frac34 ,1right 36 0.4375 35 1 0.03 其中 (k=1,2,3,4) 统计量 查表 H0的拒绝域为29.348,而2=1.839.348。所以接受假设 H0: 49. 已知P(A)=a,P(B)=n,P(AB)=c,求:(1);(2);(3);(4)已知P(A)=a,P(B)=n,P(AB)=c,求:(1);(2);(3);(4)(1) (2) (3) (4) 50. 试证明: 设fk(x)是E上非负可积函数列,且fk(x)在E上几乎处处收敛于f(x)0若有 (k=1,2,), 则试证明:设fk(x)是E上非负可积函数列,且fk(x)在E上几乎处处收敛于f(x)0若有(k=1,2,),则证明 令Fk(x)=maxf1(x),f2(x),fk(x),我们有0F(x)Fk+1(x)(kN)若记Fk(x)F(x)(k),则 ,FL(E). 从而得 . 51. 三单位向量a,b,c满足a+b+c=0,求ab+bc+ca。三单位向量a,b,c满足a+b+c=0,求ab+bc+ca。52. 求曲线y=cosx在点的切线和法线方程求曲线y=cosx在点的切线和法线方程切线方程 法线方程 53. 证明以直线A1x+By+C1=0为渐近线的二次曲线方程总能写成 (A1x+B1y+C1)(Ax+By+C)+D=0.证明以直线A1x+By+C1=0为渐近线的二次曲线方程总能写成(A1x+B1y+C1)(Ax+By+C)+D=0.证明 设以A1x+B1Y+C1=0为渐近线的二次曲线为 F(x,y)=a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0.它的渐近线为(x-x0,y-y)=0,其中(x,y)为曲线的中心,因为它是关于x-x,y-y的二次齐次式,所以它可以分解为两个一次式之积,从而有 (x-x0,y-y0)=(A1x+B1y+C1)(Ax+By+C)而(x-x0,y-y0)=a11(x-x0)2+2a12(x-x0) (y-y0)+a22(y-y0)2=a11x2+2a12xy+a22y2-2(a11x0+a12y0)x-2(a12x0+a22y0)y+a11x02+2a12x0y0+a22y02, 因为(x0,y0)为曲线的中心,所以有 a11x0+a12y0=-a13,a12x0+a22y0=-a23, 因此(x-x0,y-y0)=F(x,y)+(x0,y0)-a33, 令(x0,y0)-a33=-D,代入上式就得 F(x,y)=(x-x0,y-y0)+D, 即F(x,y)=(A1x+B1y+C1)(Ax+By+C)+D,所以以A1x+B1y+C1=0为渐近的二次曲线可写成 (A1x+B1y+C1)(Ax+By+C)+D=0. 54. 在无芽酶实验中,发现吸氨量与底水及吸氨时间都有关系,试根据表中所列数据进行回归分析(水温171;底水:10在无芽酶实验中,发现吸氨量与底水及吸氨时间都有关系,试根据表中所列数据进行回归分析(水温171;底水:100g大麦经水浸一定时间后的重量;吸氨时间:min;吸氨量:在底水的基础上再浸泡氨水后增加的重量)编号吸氨量Y底水x1吸氨时间x2编号吸氨量Y底水x1吸氨时间x216.2136.521572.8140.518027.5136.525083.1140.521534.8136.518094.3140.525045.1138.5250104.9138.521554.6138.5180114.1138.521564.6138.5215建立Y关于x1和x2的经验回归方程,并对其进行显著性检验(1)建立回归方程,为简化计算,令x1=x1-138.5,x2=x2-215,并将有关数据列表计算如下,由表中数据可得: 编号 x1 x2 y (x1)2 (x2)2 y2 x1x2 x1y x2y 1 -2 0 6.2 4 0 38.44 0 12.4 0 2 -2 35 7.5 4 1225 56.25 -70 -15.0 262.5 3 -2 -35 4.8 4 1225 23.04 70 -9.6 -168.0 4 0 35 5.1 0 1225 26.01 0 0 178.5 5 0 -35 4.6 0 1225 21.16 0 0 -161.0 6 0 0 4.6 0 0 21.16 0 0 0 7 2 -35 2.8 4 1225 7.84 70 5.6 -98 8 2 0 3.1 4 0 9.61 0 6.2 0 9 2 35 4.3 4 1225 18.49 70 8.6 150.5 10 0 0 4.9 0 0 24.01 0 0 0 11 0 0 4.1 0 0 16.81 0 0 0 0 0 52.0 24 7350 262.82 0 -16.6 164.5 故 解之得: 故得回归方程 (2)为检验回归方程显著性,下面作方差分析 Q=syy-u=17-15.073=1.927, r接近于1,故回归效果是好的 方差分析表如下: 方差来源 平方和 自由度 均方 统计量 F(2.8) 显著性 回归 15.073 2 7.5365 31.28 4.46 剩余 1.927 8 0.2409 总计 17 10 经检验,可知回归方程是显著的 55. 求微分方程y&39;&39;y&39;2y=8sin2x的通解。求微分方程y+y-2y=8sin2x的通解。56. 若级数与分别收敛于S1与S2,则以下成立的是( ) A B C D若级数与分别收敛于S1与S2,则以下成立的是()ABCDABC由收敛级数的基本性质可知:(A),(B),(C)均正确;(D)错误当S2=0时不成立57. 设f(x)的导数在x=a处连续,又,则( ) (A) x=a是f(x)的极小值点 (B) x=a是f(x)的极大值点 (C) (a,f(a)为设f(x)的导数在x=a处连续,又,则()(A) x=a是f(x)的极小值点(B) x=a是f(x)的极大值点(C) (a,f(a)为f(x)的拐点(D) x=a不是f(x)的极值点,(a,f(a)也不是曲线y=f(x)的拐点B58. 最大似然估计的统计思想是什么?最大似然估计的统计思想是什么?59. 设方阵A的特征值都是实数,且满足条件: 12n, |1|n| 为求1而作原点平移,试证:当平移量时幂法收设方阵A的特征值都是实数,且满足条件:12n,|1|n|为求1而作原点平移,试证:当平移量时幂法收厶敛最快方阵B=A-pI的特征值满足 1-P2-Pn-P, 于是 为使乘幂法对B收敛最快,应使 达到最小 记,显然有 , 于是 下证事实上,令p=p-,若0,则 同理可证,若0,也有成立故对任何户,都有,等号仅当时成立,即当时p达到最小,从而幂法对B收敛最快对A作原点平移求特征值1时,欲证平移量P取时乘幂法收敛最快,只须证明:对任意满足 的实数P,均有 根据题中条件及一些不等式运算即可证明题中结论 60. 如果一个n(n1)阶行列式中元素均为+1或-1,则行列式的值是否一定为偶数?如果一个n(n1)阶行列式中元素均为+1或-1,则行列式的值是否一定为偶数?正确答案:一定。根据行列式的性质若将该行列式的任意一行加到另外一行对应元素上去得到的行列式中一定有一行元素全为偶数(零也是偶数)则该行元素可提出公因子2剩下的行列式元素都是整数其值也是整数乘以2后必定是偶数故行列式的值一定为偶数。一定。根据行列式的性质,若将该行列式的任意一行加到另外一行对应元素上去,得到的行列式中一定有一行元素全为偶数(零也是偶数),则该行元素可提出公因子2,剩下的行列式元素都是整数,其值也是整数,乘以2后必定是偶数,故行列式的值一定为偶数。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!