鼓式制动器设计设计说明书

上传人:沈*** 文档编号:89039847 上传时间:2022-05-12 格式:DOC 页数:64 大小:3.12MB
返回 下载 相关 举报
鼓式制动器设计设计说明书_第1页
第1页 / 共64页
鼓式制动器设计设计说明书_第2页
第2页 / 共64页
鼓式制动器设计设计说明书_第3页
第3页 / 共64页
点击查看更多>>
资源描述
. .毕业设计设计说明书题 目 SC6408V 商 用 车 鼓式制动器总成设计 专业 车辆工程汽车工程班级 2006级汽车一班 学 生 _ 廖 械 兵 指导教师_ 文 孝 霞 XX交通大学2021年前 言1 本课题的目的和意义近年来,国内、外对汽车制动系统的研究与改良的大局部工作集中在通过对汽车制动过程的有效控制来提高车辆的制动性能及其稳定性,如ABS 技术等,而对制动器本身的研究改良较少。然而,对汽车制动过程的控制效果最终都须通过制动器来实现,现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改良制动器机构、解决制约其性能的突出问题具有非常重要的意义。对于蹄鼓式制动器,其突出优点是可利用制动蹄的增势效应而到达很高的制动效能因数,并具有多种不同性能的可选构造型式,以及其制动性能的可设计性强、制动效能因数的选择X围很宽、对各种汽车的制动性能要求的适应面广,至今仍然在除局部轿车以外的各种车辆的制动器中占主导地位。但是,传统的蹄鼓式制动器存在本身无法克制的缺点,主要表现于:其制动效能的稳定性较差,其摩擦副的压力分布均匀性也较差,衬片磨损不均匀;另外,在摩擦副局部接触的情况下容易使制动器制动力矩发生较大的变化,因此容易使左右车轮的制动力产生较大差值,从而导致汽车制动跑偏。对于钳盘式制动器,其优点在于:制动效能稳定性和散热性好,对摩擦材料的热衰退较不敏感,摩擦副的压力分布较均匀,而且构造较简单、维修较简便。但是,钳盘式制动器的缺点在于:其制动效能因数很低只有0.7 左右,因此要求很大的促动力,导致制动管路内液体压力高,而且其摩擦副的工作压强和温度高;制动盘易被污染和锈蚀;当用作后轮制动器时不易加装驻车制动机构等。 因此,现代车辆上迫切需要一种可克制已有技术缺乏之处的先进制动器,它可充分发挥蹄鼓式制动器制动效能因数高的优点,同时具有摩擦副压力分布均匀、制动效能稳定以及制动器间隙自动调节机构较理想等优点。2 商用车制动系概述 汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。从汽车诞生时起,车辆制动系统在车辆的平安方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。汽车制动系统种类很多,形式多样。传统的制动系统构造型式主要有机械式、气动式、液压式、气液混合式。它们的工作原理根本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以到达车辆制动减速,或直至停车的目的。汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置,牵引汽车应有自动制动装置等。 作为制动系的主要组成局部,在车辆上常用的传统蹄鼓式制动器包括领从蹄型、双领蹄型、双从蹄型、双向自增力型等不同的构造型式。3 鼓式制动器技术研究进展和现状长期以来,为了充分发挥蹄鼓式制动器的重要优势,旨在克制其主要缺点的研究工作和技术改良一直在进展中,尤其是对蹄鼓式制动器工作过程和性能计算分析方法的研究受到高度重视。这些研究工作的重点在于制动器构造和实际使用因素等对制动器的效能及其稳定性等的影响,取得了一些重要的研究成果,得到了一些比拟可行、有效的改良措施,制动器的性能也有了一定程度的提高。1978 年,Brian Ingram 等提出一种蹄平动的鼓式制动器形式;这种制动器的制动蹄因为受到滑槽的限制,只能平动不能转动,因此没有增势效应,也没有减势效应,与盘式制动器类似,理论上制动效能和摩擦系数的关系是线性的,制动稳定性较好,同时,可以有效地防止传统鼓式制动器普遍的摩擦片偏磨现象,但制动效能因数较低。1997年,提出了一种“电控自增力鼓式制动器设计方案,该制动器是通过机械的方法来实现鼓式制动器的自增力,制动效能因数的变化X围为26。应用一套电控机械装置调整领蹄的支承点来提高制动器的制动效能数,以补偿由于摩擦材料的热衰退而引起的摩擦系数降低。该制动器到达一样的制动力矩所要求的输入力是盘式制动器1/7。该系统的控制装置允许每个制动器单独工作,从而提高了行车的平安性,另外对驾驶和操纵舒适性也有所提高,但仍然存在一些问题,诸如系统复杂、高能耗、高本钱、维护困难等。1999年提出一种四蹄八片块式制动器,通过对构造参数合理匹配设计,制动效能因数有一定地提高,同时制动效能_因数对摩擦系数的敏感性也可以有适当地改善,这就在一定程度上改善了制动效能的稳定性。2000 年,提出一种具有多自由度联动蹄的新型蹄鼓式制动器,该型式的制动器使得制动效能因数及其稳定性得到显著提高;摩擦副间压力分布趋于均匀,可保证摩擦副间接触状态的稳定,并延长摩擦片使用寿命;性能参数可设计性强,可根据对制动效能的需要,较灵活地进展制动器设计。另外,近年来那么出现了一些全新的制动器构造形式,如磁粉制动器、湿式多盘制动器、电力液压制动臂型盘式制动器、湿式盘式弹簧制动器等。对于关键磁性介质磁粉,选用了抗氧化性强、耐磨、耐高温、流动性好的军工磁粉;磁毂组件选用了超级电工纯铁DT4,保证了空转力矩小、重复控制精度高的性能要求;在热容量和散热等方面,采用了双侧带散热风扇,设计了散热风道等,使得该技术有着极好的应用前景3。尽管对蹄鼓式制动器的设计研究取得了一定的成绩,但是对传统蹄鼓式制动器的设计仍然有着不可替代的根底性和研发性作用,也可为后续设计提供理论参考。4 研究重点以及目的研究重点:根据设计车型的特点,合理计算该车型制动系统制动力及制动器最大制动力矩、鼓式制动器的构造形式及选择、鼓式制动器主要参数的计算与确定、摩擦衬块的磨损特性计算、制动器热容量和温升的核算、制动力矩的计算与校核、在二维或三维设计平台AUTO CAD中完成鼓式制动器零件图以及装配图的绘制、设计合理性的分析和评价等。本次设计的目的是通过合理整和已有的设计,阅读大量文献,掌握机械设计的根本步骤和要求,以及传统的机械制图的步骤和规那么;掌握鼓式制动器总成的相关设计方法,以进一步扎实汽车设计根本知识;学会用AUTO CAD,UG等三维软件进展根本的二维或三维建模和制图,同时提高分析问题及解决问题的能力。提出将各种设计方法互相结合,针对不同的设计内容分别应用不同的方法,以促进其设计过程方法优化、设计结果精益求精。. .word. .目录中文摘要I英文摘要II第1章鼓式制动器构造形式及选择11.1鼓式制动器的形式构造11.2 鼓式制动器按蹄的属性分类21.2.1 领从蹄式制动器21.2.2 双领蹄式制动器61.2.3 双向双领蹄式制动器71.2.4 单向増力式制动器91.2.5 双向増力式制动器9第2章制动系的主要参数及其选择132.1 制动力与制动力分配系数132.2 同步附着系数182.3制动器最大制动力矩202.4 鼓式制动器的构造参数与摩擦系数212.4.1 制动鼓内径D222.4.2 摩擦衬片宽度b和包角222.4.3 摩擦衬片起始角242.4.4 制动器中心到X开力P作用线的距离a242.4.5 制动蹄支承点位置坐标k和c242.4.6 衬片摩擦系数f24第3章制动器的设计计算253.1浮式领从蹄制动器(平行支座面) 制动器因素计算253.2制动驱动机构的设计计算273.2.1所需制动力计算273.2.2制动踏板力验算283.2.3 确定制动轮缸直径293.2.4轮缸的工作容积293.2.5 制动器所能产生的制动力计算303.3制动蹄片上的制动力矩313.4制动蹄上的压力分布规律353.5 摩擦衬片的磨损特性计算373.6 制动器的热容量和温升的核算403.7行车制动效能计算413.8 驻车制动的计算42第4章制动器主要零件的构造设计454.1制动鼓454.2 制动蹄464.3 制动底板464.4 制动蹄的支承474.5 制动轮缸474.6 摩擦材料474.7 制动器间隙48结论50致51参考文献52附录 153附录 254. .word. .摘要鼓式制动也叫块式制动,现在鼓式制动器的主流是内X式,它的制动蹄位于制动轮内侧,刹车时制动块向外X开,摩擦制动轮的内侧,到达刹车的目的。制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。制动系统的主要部件就是制动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄鼓式制动器。本设计就摩擦式鼓式制动器进展了相关的设计和计算。在设计过程中,以实际产品为根底,根据我国工厂目前进展制动器新产品开发的一般程序,并结合理论设计的要求,首先根据给定车型的整车参数和技术要求,确定制动器的构造形式及、制动器主要参数,然后计算制动器的制动力矩、制动蹄上的压力分布、蹄片变形规律、制动效能因数、制动减速度、耐磨损特性、制动温升等,并在此根底上进展制动器主要零部件的构造设计。最后,完成装配图和零件图的绘制。关键词:鼓式制动器,制动力矩,制动效能因数,制动减速度,制动温升ABSTRACTDrum brake, also known as block-type brake, drum brakes, now within the mainstream style sheets, and its brake shoes located inside the brake wheel, brake brake blocks out when open, the inside wheel friction brake, to achieve the purpose of the brakes.In the vehicle braking system has a very important role, failure will result in disaster if serious consequences. The main parts of the braking system is the brake, in the modern car is still widely used in high performance brake shoe - brake drum. The design of the friction drum brakes were related to the design and calculation. In the design process, based on the actual product, according to our current brake factory general new product development process, and theoretical design requirements, the first model of the vehicle according to the given parameter and the technical requirements, determine the brake structure and, brake main parameters, and then calculate the braking torque brake, brake shoes on the pressure distribution, deformation shoe, brake effectiveness factor, braking deceleration, wear characteristics, brake temperature, etc., and in this brake on the basis of the structural design of major ponents. Finally, assembly drawings and parts to plete mapping.KEY WORDS:drum brake, braking torque, brake efficiency factor, braking deceleration, brake temperature rising. .word. .第1章 鼓式制动器构造形式及选择除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进展减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,既是利用固定元件与旋转元件工作外表间的摩擦而产生制动力矩使汽车减速或停车的。鼓式制动器又分为内X型鼓式制动器和外束型鼓式制动器。内X型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板那么又紧固于前梁或后桥壳的突缘上对车轮制动器或变速器壳或与其相固定的支架上对中央制动器;其旋转摩擦元件固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱外表与制动蹄摩擦片的外外表作为一对摩擦外表在制动鼓上产生摩擦力矩,故称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱外表和制动带摩擦片的内圆弧面作为一对摩擦外表,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已经很少使用,所以内X型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内X型鼓式制动器。1.1鼓式制动器的形式构造鼓式制动器可按其制动蹄的受力情况分类见图1.1,它们的制动效能,制动鼓的受力平衡状况以及对车轮旋转方向对制动效能的影响均不同。 图 1.1 鼓式制动器简图(a)领从蹄式用凸轮X开;b领从蹄式用制动轮缸X开;c双领蹄式非双向,平衡式;d双向双领蹄式;e单向增力式;f双向増力式制动蹄按其X开时的转动方向和制动鼓的转动方向是否一致,有领蹄和从蹄之分。制动蹄X开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,那么称为从蹄。1.2 鼓式制动器按蹄的属性分类1.2.1 领从蹄式制动器 如图1.1a,b所示,假设图上的旋转箭头代表汽车前进时的制动鼓的旋转方向制动鼓正向旋转,那么蹄1为领蹄,蹄2为从蹄。汽车倒车时制动鼓的旋转方向改变,变为反向旋转,随之领蹄与从蹄也就相互对调。这种当制动鼓正,反向旋转时总具有一个领蹄和一个从蹄的内X型鼓式制动器,称为领从蹄式制动器。由图1.1a,b可见,领蹄所受的摩擦力矩使蹄压得更紧,即摩擦力矩具有“增势作用,故称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势作用,故又称为减势蹄。“增势作用使领蹄所受的法向反力增大,而“减势作用使从蹄所受的法向反力减小。图 1.2 PERROT公司的S凸轮制动器图 1.3 俄KamA3汽车的S凸轮式车轮制动器1 制动蹄;2凸轮;3制动底板;4调整臂;5凸轮支座及制动气室;6滚轮对于两蹄的X开力的领从蹄式制动器构造,如图1.1b所示,两蹄压紧制动鼓的法向反力应相等。但当制动鼓旋转并制动时,领蹄由于摩擦力矩的“增势作用,使其进一步压紧制动鼓使其所受的法向反力加大;从蹄由于摩擦力矩的“减势作用而使其所受的法向反力减少。这样,由于两蹄所受的法向反力不等,不能相互平衡,其差值要由车轮轮毂承受。这种制动时两蹄法向反力不能相互平衡的制动器称为非平衡式制动器。液压或锲块驱动的领从蹄式制动器均为非平衡式构造,也叫简单非平衡式制动器。非平衡式制动器对轮毂轴承造成附加径向载荷,而且领蹄摩擦衬片外表的单位压力大于从蹄的,磨损较严重。为使衬片寿命均匀。可将从蹄的摩擦衬片包角适当地减小。对于如图1.1a所示具有定心凸轮X开装置的领从蹄制动器,在制动时,凸轮机构保证了两蹄等位移,因此作用于两蹄上的法向反力和由此产生的制动力矩应分别相等,而作用于两蹄的X开力,那么不等,并且必然有0的车轮,其力矩平衡方程为-=0 式2.1式中: 制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反, 地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;车轮有效半径,m。令式2.2并称之为制动器制动力,它是在轮胎周缘克制制动器摩擦力矩所需的力,因此又称为制动周缘力。与地面制动力的方向相反,当车轮角速度0时,大小亦相等,且仅由制动器构造参数所决定。即取决于制动器构造形式,尺寸,摩擦副的摩擦系数及车轮半径等,并与制动踏板力即制动系的液压或气压成正比。当加大踏板力以加大,和均随之增大。但地面制动力受附着条件的限制,其值不可能大于附着力,即=Z 式2.3或= Z 式2.4式中 轮胎与地面间的附着系数; Z 地面对车轮的法向反力。 当制动器制动力和地面制动力到达附着力值时,车轮即被抱死并在地面上滑移。此后制动力矩即表现为静摩擦力矩,而=/即成为与相平衡以阻止车轮再旋转的周缘力的极限值。当制动到=0以后,地面制动力到达附着力值后就不再增大,而制动器制动力由于踏板力增大使摩擦力矩增大而继续上升见图2.1图 2.1 制动器制动力,地面制动力与踏板力的关系根据汽车制动时的整车受力分析,考虑到制动时的轴荷转移,可求得地面对前,后轴车轮的法向反力,为:=式2.5式中:G 汽车所受重力,N; L 汽车轴距,mm; 汽车质心离前轴距离,mm; 汽车质心离后轴距离,mm; 汽车质心高度,mm; 附着系数。取一定值附着系数=0.8;所以在空,满载时由式2.5可得前后制动反力Z为以下数值故 满载时:=11424.43N=4255.57N 空载时:=9268.32N=1908.46N由以上两式可求得前、后轴车轮附着力即为车辆工况前轴法向反力,N后轴法向反力,N汽车空载9268.321908.46汽车满载11424.434255.57表2.1图 2.2 制动时的汽车受力图汽车总的地面制动力为=+=Gq式2.6式中qq= 制动强度,亦称比减速度或比制动力;, 前后轴车轮的地面制动力。由以上两式可求得前,后车轮附着力为=式2.7由条件及式2.7可得得前、后轴车轮附着力即地面最大制动力为故 满载时:=9139.54N=3404.45N 空载时:=7413.60N=1526.77N故满载时前、后轴车轮附着力即地面最大制动力为:车辆工况前轴车轮附着力,N后轴车轮附着力,N汽车空载7413.601526.77汽车满载9139.543404.45表 2.2上式说明:汽车附着系数为任意确定的路面上制动时,各轴附着力即极限制动力并非为常熟,而是制动强度q或总之动力的函数。当汽车各车轮制动器的制动力足够时,根据汽车前,后的周和分配,前,后车轮制动器制动力的分配,道路附着系数和坡度情况等,制动过程可能出现的情况有三种,即1前轮先抱死拖滑,然后后轮再抱死拖滑; 2后轮先抱死拖滑,然后前轮再抱死拖滑; 3前,后轮同时抱死拖滑。 由以上三种情况中,显然是最后一种情况的附着条件利用得最好。 由式2.6,2.7不难求得在任何附着系数的路面上,前,后车轮同时抱死即前,后轴车轮附着力同时被充分利用的条件是+=+=G=式2.8式中 前轴车轮的制动器制动力,=; 后轴车轮的制动器制动力,=; 前轴车轮的地面制动力; 后轴车轮的地面制动力;, 地面对前,后轴车轮的法向反力;G 汽车重力;, 汽车质心离前,后轴距离; 汽车质心高度。 由式2.8可知,前,后车轮同时抱死时,前,后制动器的制动力,是的函数。 由式2.8中消去,得式2.9式中 L 汽车的轴距。 将上式绘成以,为坐标的曲线,即为理想的前,后轮制动器制动力分配曲线,简称I曲线,如图2.3所示。如果汽车前,后制动器的制动力,能按I曲线的规律分配,那么能保证汽车在任何附着系数的路面上制动时,能使前后车轮同时抱死。然而,目前大多数两轴汽车由其是货车的前后制动力之比为一定值,并以前制动与总制动力之比来说明分配的比例,称为汽车制动器制动力分配系数= 式2.10联立式2.8和式2.10可得=带入数据得 满载时:=0.73空载时:=0.82由于在附着条件限定的X围内,地面制动力在数值上等于相应的制动周缘力,故又可通称为制动力分配系数。又由于满载和空载时的理想分配曲线非常接近,故应采用构造简单的非感载式比例阀,同时整个制动系应加装ABS防抱死制动系统。图 2.3 某载货汽车的I曲线与线2.2 同步附着系数由式2.10可得表达式 = 式2.11 上式在图2.3中是一条通过坐标原点斜率为的直线,它是具有制动器制动力分配系数的汽车的实际前,后制动器制动力分配线,简称线。图中线与I曲线交于B点,可求出B点处的附着系数=,那么称线与I线交线处的附着系数为同步附着系数。它是汽车制动性能的一个重要参数,由汽车构造参数所决定。同步附着系数的计算公式是: 式2.12由条件以及式2.12可得满载时:=0.78空载时:=0.67根据设计经历,空满载的同步附着系数和应在以下X围内:轿车:0.650.80;轻型客车、轻型货车:0.550.70;大型客车及中重型货车:0.450.65。故所得同步附着系数满足要求。故所得同步附着系数满足要求。制动力分配的合理性通常用利用附着系数与制动强度的关系曲线来评定。利用附着系数就是在某一制动强度q下,不发生任何车轮抱死所要求的最小路面附着系数。前轴车轮的利用附着系数可如下求得: 设汽车前轮刚要抱死或前、后轮刚要同时抱死时产生的减速度为,那么 式(2.13)而由式 可得前轴车轮的利用附着系数为 式(2.14)同样可求出后轴车轮的利用附着系数为: 式(2.15)由此得出利用附着系数与制动强度的关系曲线为:图2.4 制动强度与利用附着系数关系曲线空载图2.5 制动强度与利用附着系数关系曲线满载根据GB 126761999附录A,未装制动防抱死装置的M1类车辆应符合以下要求:(1) 值在0.20.8之间时,那么必须满足q0.1+0.85(-0.2) (2) q值在0.150.8之间,车辆处于各种载荷状态时,1线,即前轴利用附着系数应在2线,即后轴利用附着系数线之上;但 q值在0.30.45时,假设2不超过=q线以上0.05,那么允许2线,即后轴利用附着系数线位于1线,即前轴利用附着系数线之上。由以上两图所示,设计的制动器制动力分配符合要求。2.3制动器最大制动力矩应合理确实定前,后制动器的制动力矩,以保证汽车有良好的制动效能和稳定性。最大制动力是在汽车附着质量被完全利用的条件下获得的,这时制动力与地面作用于车轮的法向力,成正比。由式2.8可知,双轴汽车前,后车轮附着力同时被充分利用或前,后同时抱死时的制动力之比为= 式2.16式中 , 汽车质心离前,后轴距离; 同步附着系数; 汽车质心高度。通常,上式的比值:轿车约为1.31.6;货车约为0.50.7.制动器所能产生的制动力矩,受车轮的计算力矩所制约,即= 式2.17= 式2.18式中: 前轴制动器的制动力,; 后轴制动器的制动力,; 作用于前轴车轮上的地面法向反力; 作用于前轴车轮上的地面法向反力; 车轮有效半径。 根据市场上的大多数微型货车轮胎规格及国家标准GB 9744-2007;选取的轮胎型145/80R12。由GB2978可得有效半径=270mm对于常遇到的道路条件较差,车速较低因而选取了较小的同步附着系数值的汽车,为保证在的良好路面上例如=0.8能够制动到后轴和前轴先后抱死滑移,前,后轴的车轮制动器所能产生的最大制动力矩为= 式2.19= 式2.20由式2.19,式2.20可得=2451.94= =538.23当汽车各车轮制动器的制动力足够时,根据汽车前、后轴的轴荷分配,前、后车轮制动器制动力的分配、道路附着系数和坡度情况等,制动过程可能出现的情况有三种,即(1)前轮先抱死拖滑,然后后轮再抱死拖滑; (2)后轮先抱死拖滑,然后前轮再抱死拖滑;(3)前、后轮同时抱死拖滑。在以上三种情况中,显然是最后一种情况的附着条件利用得最好。2.4 鼓式制动器的构造参数与摩擦系数2.4.1 制动鼓内径D输入力P一定时,制动鼓内径越大,制动力矩越大,且散热能力也越强。但增大D(图2.6)受轮辋内径限制。制动鼓与轮辋之间应保持足够的间隙,通常要求该间隙不小于20mm,否那么不仅制动鼓散热条件太差,而且轮辋受热后可能粘住内胎或烤坏气门嘴。制动鼓应有足够的壁厚,用来保证有较大的刚度和热容量,以减小制动时的温升。由选取的轮胎型号145/80R12,得Dr=1225.4=304.8mm 故 D=0.75304.8=228mm由QC/T3091999?制动鼓工作直径及制动蹄片宽度尺寸系列的规定?,从表2.3轮辋直径/in121314151620,22.5制动鼓最大内径/mm轿车180200240260货车220240260300320420表2.3取得制动鼓内径=220mm轮辋直径Dr=304.8mm,制动鼓的直径D与轮辋直径之比的X围:D/Dr=0.700.83;经过计算,初选数值约为0.75,属于0.700.83X围内。因此符合设计要求。图2.6鼓式制动器的主要几何参数2.4.2 摩擦衬片宽度b和包角摩擦衬片宽度尺寸的选取对摩擦衬片的使用寿命有影响。衬片宽度尺寸取窄些,那么磨损速度快,衬片寿命短;假设衬片宽度尺寸取宽些,那么质量大,不易加工,并且增加了本钱。制动鼓半径R确定后,衬片的摩擦面积为A=Rb。制动器各蹄衬片总的摩擦面积越大,制动时所受单位面积的正压力和能量负荷越小,从而磨损特性越好。根据统计资料分析,单个车轮鼓式制动器的衬片面积随汽车总质量增大而增大,具体数据见表2.5。试验说明,摩擦衬片包角为:90100时,磨损最小,制动鼓温度最低,且制动效能最高。角减小虽然有利于散热,但单位压力过高将加速磨损。实际上包角两端处单位压力最小,因此过分延伸衬片的两端以加大包角,对减小单位压力的作用不大,而且将使制动不平顺,容易使制动器发生自锁。因此,包一般不宜大角于120。衬片宽度b较大可以减少磨损,但过大将不易保证与制动鼓全面接触。初选衬片包角。摩擦衬片宽度b取得较大可以降低单位压力、减少磨损,但过大那么不易保证与制动鼓全面接触。通常根据在紧急制动时使其单位压力不超过2.5MPa,以及国家标准QC/T3091999选取摩擦衬片宽度b=40mm。表 2.4 制动器衬片摩擦面积根据国外统计资料可知,单个鼓式车轮制动器总的衬片摩擦面积随汽车总质量的增大而增大,并且制动器各蹄片摩擦衬片总摩擦面积愈大,那么制动时产生的单位面积正压力愈小,从而磨损亦愈小。而单个摩擦衬片的摩擦面积A又决定于制动鼓半径R、衬片宽度b及包角,即 式(2.21)式中,是以弧度(rad)为单位,故摩擦衬片的摩擦面积A=11040110/1803.14mm2=84.5cm2单个制动器的摩擦衬片的摩擦面积=2A=169 cm2,如表2.4所示,摩擦衬片宽度b的选取合理。2.4.3摩擦衬片起始角一般将衬片布置在制动蹄的中央,即令=90-/2=。2.4.4制动器中心到X开力P作用线的距离a在保证轮缸能够布置于制动鼓内的条件下,应使距离a(图2.6)尽可能大,以提高制动效能。初取a=0.8R左右,那么取a=86mm2.4.5制动蹄支承点位置坐标k和c应在保证两蹄支承端毛面不致互相干预的条件下,使k尽可能小而c尽可能大(图2.6)。初取k=0.2R=27mm,c=80mm。2.4.6衬片摩擦系数f选择摩擦片时不仅希望其摩擦系数高,更要求其热稳定性要好,受温度和压力的影响要小。但不能单纯地追求摩擦材料的高摩擦系数,对领从蹄式制动器而言,提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性是非常重要的。另外,在选择摩擦材料时应尽量采用减少污染和对人体无害的材料。当前国产的制动摩擦片材料在温度低于250时,保持摩擦系数=0.350.40已无大问题。因此,在假设的理想条件下进展制动器设计时,取=0.38可使计算结果接近实际。第3章 制动器的设计计算3.1浮式领从蹄制动器(平行支座面) 制动器因素计算 对于浮式蹄,其蹄片端部支座面法线可与X开力作用线平行(称为平行支座)或不平行(称为斜支座)。参见图3.1。平行支座可视作斜支座的特例,即图3.1中,对于最一般的情况:图3.1 浮式蹄(a)平行支座 (b) 斜支座单个斜支座浮式领蹄制动蹄因数BFT3= 式(3.1)单个斜支座浮式从蹄制动蹄因数BFT4= 式(3.2)上两式中 式(3.3)式(3.4) 式(3.5) 式(3.6) 式(3.7) 式(3.8)为蹄片端部与支座面间摩擦系数,如为钢对钢那么=0.20.3。角正负号取值按以下规那么确定:当,为正;,为负。这样浮式领从制动器因数为 式(3.9)对于平行支座式的支撑形式,以上各式中,取=0.3,f=0.4,故可得: =81/105+86/105+0.327/105 =1.67 =0.381/105 cos0 =0.23 = =0.77+ =1 =0.77-0.3cos0-0 =0.48=0.3得: = =0.381.67+0.3820.23/0.77-0.381+0.3820.48 =2.08= =0.381.67-0.3820.23/0.77+0.381+0.3820.48 =0.16得 =2.08+0.16 =2.24表 3.1不同类型制动器的制动器因数3.2制动驱动机构的设计计算3.2.1所需制动力计算 根据汽车制动时的整车受力分析,由之前的分析得:地面对前、后轴车轮的法向反力Z1,Z2为:汽车总的地面制动力为:前、后轴车轮附着力为:故所需的制动力F需= 式(3.10) = =3404.45N3.2.2制动踏板力验算制动踏板力可用下式计算:. 式(3.11)式中 主缸活塞直径,为23.81mm;制动管路的液压;踏板机构传动比,一般为25,取4.5;真空助力比,取4.5,见图3.2;踏板机构及制动主缸的机械效率,可取0.850.95,取为0.92。 图3.2 液压制动驱动机构计算用简图根据设计经历取制动时的踏板力为=250N,可得制动管路的液压p= 式(3.12) = =9mpa3.2.3确定制动轮缸直径 制动轮缸对制动蹄或制动块的作用力P与轮缸直径及制动轮缸中的液压力P有如下关系: 式(3.13)式中 考虑制动力调节装置作用下的轮缸或管路液压= 812MPa,取= 9MPa。由 , 式(3.14)及X开力的计算公式:与制动器因数定义式 可表示为:, 得 式(3.15)=17.1mm轮缸直径应在GB752487标准规定的尺寸系列中选取,缸直径的尺寸系列为:14.5,16,17.5,19,22,24,25,28,30,32,35,38,40,45,50,55mm。取得=17.5mm3.2.4轮缸的工作容积一个轮缸的工作容积: 式(3.16)式中一个轮缸活塞的直径;n轮缸的活塞数目;一个轮缸活塞在完全制动时的行程:在初步设计时,对鼓式制动器取=22.5mm。消除制动蹄(制动块)与制动鼓(制动盘)间的间隙所需的轮缸活塞行程,对鼓式制动器约等于相应制动蹄中部与制动鼓之间的间隙的2倍;因摩擦衬片(衬块)变形而引起的轮缸活塞行程,可根据衬片(衬块)的厚度、材料弹性模量及单位压力计算;,鼓式制动器的蹄与鼓之变形而引起的轮缸活塞行程,试验确定。可得:一个轮缸的工作容积: =mm3 =1105.87 mm3全部轮缸的总工作容积 式(3.17)式中
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!