phreeqc实例练习地下水污染与防治

上传人:仙*** 文档编号:82056081 上传时间:2022-04-28 格式:DOC 页数:106 大小:1,001KB
返回 下载 相关 举报
phreeqc实例练习地下水污染与防治_第1页
第1页 / 共106页
phreeqc实例练习地下水污染与防治_第2页
第2页 / 共106页
phreeqc实例练习地下水污染与防治_第3页
第3页 / 共106页
点击查看更多>>
资源描述
PHREEQC实例分析例1物种形成分析这个例子计算了海水中矿物质的分布以及一组有关矿物在海水中的饱和程度。为了证明如何在这个模型中应用新的元素,将元素铀添加入由phreeqc.dat定义的液相模型中wateq.dat是包含于程序分类中的一个数据库文件,它来自于WATEQ4F(Ball and Nordstrom, 1991),并包含铀。物质形成计算所需要的数据包括温度、Ph、元素的浓度和/或其元素的化合价。海水中的这些数据见表10。这个例子计算中输入的数据组见表11。在模拟中所运用的有关计算的注释包含在TITLE关键字中。SOLUTION数据块定义了海水的成分。注意:元素的化合价用元素化学符号后面圆括号中的数字表示S(6), N(5), N(-3)和O(0)。表10海水的成分未指定浓度时,其浓度的单位为ppm分析的组分PHREEQC符号浓度钙Ca412.3镁Mg1291.8钠Na10768.0钾K399.1铁Fe.002锰Mn.0002硅石,SiO2Si4.28氯化物Cl19353.0碱度,HCO3-Alkalinity141.682硫酸盐,SO42-S(6)2712.0硝酸盐,NO3-N(5).29铵,NH4+N(-3).03铀U.0033pH,标准单位pH8.22pe,无单位pe8.451温度,temperature25.0密度,千克/升density1.023用于分配氧化还原元素和计算饱和指数的pe由redox标识符所指定。在这个例子中,用氧化还原电对O(-2)/O(0) 计算的pe值相对应于溶解氧/水,并且这个pe适用于需要pe值的所有的计算。如果redox没有指定,那么缺省的值将会是所输入的pe。缺省的氧化还原标识符可被任何氧化还原元素代替,如输入元素锰时,则输入的pe被用来表示各种化合价状态的锰;输入铀时,这里是氮/铵电对将会用来计算所形成各种价态铀的pe值。数据组中缺省的单位为ppm(units标识符)。这个缺省值可以替换为任何浓度单位,如指定铀的浓度为ppb来代替ppm。因为ppm是一个质量单位,而不是一个摩尔单位,这个程序必须用分子量来将浓度单位转化为摩尔单位。每一种主要物质缺省的分子量在SOLUTION_MASTER_SPECIES输入中指定(缺省数据库phreeqc.dat的值列在表4和附录B中)。如果提交的分子量数据不同于其缺省值,必须在输入数据的设置中指定适当的分子量。这可以用gfw标识符来完成,在这里输入真正的分子量,转化硝酸盐的分子量为62.0 g/mol,或是更简便的是以as标识符来完成,在这里输入所使用的化学分子式的单位,正如在这个例子中输入的碱和铵是一样的。注意最后给定的溶解氧O(0)的浓度是1ppm的初始估计值,但它的浓度将会得以调整,直到氧气分压的对数达到-0.7。O2(g)的定义是在缺省数据库文件中在PHASES输入(附录B)。当使用相均衡来指定初始浓度正如这个例子中的O(0),则仅有一种浓度是得以调整。例如,例如石膏被用来调整钙的浓度,钙的浓度会改变,而硫酸盐的浓度却保持不变。表11 例1的输入数据TITLE Example 1.-Add uranium and speciate seawater.SOLUTION 1 SEAWATER FROM NORDSTROM ET AL. (1979)units ppmpH 8.22pe 8.451density 1.023temp 25.0redox O(0)/O(-2)Ca 412.3Mg 1291.8Na 10768.0K 399.1Fe0.002Mn 0.0002 peSi 4.28Cl 19353.0Alkalinity 141.682 as HCO3S(6) 2712.0N(5) 0.29 gfw 62.0N(-3) 0.03 as NH4U 3.3 ppb N(5)/N(-3)O(0) 1.0 O2(g) -0.7SOLUTION_MASTER_SPECIESU U+4 0.0 238.0290 238.0290U(4) U+4 0.0 238.0290U(5) UO2+ 0.0 238.0290U(6) UO2+2 0.0 238.0290SOLUTION_SPECIES# primary master species for U# is also secondary master species for U(4)U+4 = U+4log_k 0.0U+4 + 4 H2O = U(OH)4 + 4 H+log_k -8.538delta_h 24.760 kcalU+4 + 5 H2O = U(OH)5- + 5 H+log_k -13.147delta_h 27.580 kcal# secondary master species for U(5)U+4 + 2 H2O = UO2+ + 4 H+ + e-log_k -6.432delta_h 31.130 kcal# secondary master species for U(6)U+4 + 2 H2O = UO2+2 + 4 H+ + 2 e-log_k -9.217delta_h 34.430 kcalUO2+2 + H2O = UO2OH+ + H+log_k -5.782delta_h11.015 kcal2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+log_k -5.626delta_h -36.04 kcal3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+log_k-15.641delta_h -44.27 kcalUO2+2 + CO3-2 = UO2CO3log_k 10.064delta_h 0.84 kcalUO2+2 + 2CO3-2 = UO2(CO3)2-2log_k 16.977delta_h 3.48 kcalUO2+2 + 3CO3-2 = UO2(CO3)3-4log_k 21.397delta_h -8.78 kcalPHASESUraniniteUO2 + 4 H+ = U+4 + 2 H2Olog_k -3.490delta_h -18.630 kcalEND程序的的数据库文件phreeqc.dat中不包含铀。这样,当应用这个数据库文件时,输入文件中一定得包括描述热动力学和液相中含铀组分的数据。需要两个关键字来定义铀的形态,即SOLUTION_MASTER_SPECIES和SOLUTION_SPECIES。通过把这两个数据块加到输入文件中,将会在程序运行中确定液相中含铀组分。为把铀稳定地加到列出的元素中,则这些数据块应加入到数据库文件中。这里铀的数据是说明性的,而不是铀物质的完整描述。使用SOLUTION_MASTER_SPECIES输入来定义含铀的主要物质成分是必要的。因为铀是活泼的氧化还原元素,所以定义具有不同化合价的次要含铀物质也是很有必要的。SOLUTION_MASTER_SPECIES(表11)数据块定义了U+4为主要的含铀物质,同时+4价的铀也是次级主要物质。UO2 +是化合价为+5的次级主要含铀物质,UO2 +2是化合价为+6的次级主要含铀物质。定义这些液相和其它任何铀络合物的方程必须通过SOLUTION_SPECIES输入来进行。在数据块SOLUTION_SPECIES (表11)中,主要的和次要的物质均附有注释。首要的主要物质总是以恒等反应(U+4 = U+4)的形式来定义的。次主要物质是在化学反应中仅有的含有电子的液相。另外的氢氧化物和碳酸盐络合物定义为+4和+6价,无+5价。最后,在PHASES输入中定义一种新的含铀矿物。在物质形成模拟中该物质将会被用来计算饱和指数,在计算机运行中的批反应、运移或是反向模拟中,如果没有重新定义,则不能使用。表12-例1的输出Input file: ex1Output file: ex1.outDatabase file: ./phreeqc.dat-Reading data base.-SOLUTION_MASTER_SPECIESSOLUTION_SPECIESPHASESEXCHANGE_MASTER_SPECIESEXCHANGE_SPECIESSURFACE_MASTER_SPECIESSURFACE_SPECIESRATESEND-Reading input data for simulation 1.-SOLUTION 1 SEAWATER FROM NORDSTROM ET AL. (1979) units ppm pH 8.22 pe 8.451 density 1.023 temp 25.0 redox O(0)/O(-2) Ca 412.3 Mg 1291.8 Na 10768.0 K 399.1 Fe 0.002 Mn 0.0002 pe Si 4.28 Cl 19353.0 Alkalinity 141.682 as HCO3 S(6) 2712.0 N(5) 0.29 as NO3 N(-3) 0.03 as NH4 U 3.3 ppb N(5)/N(-3) O(0) 1.0 O2(g) -0.7SOLUTION_MASTER_SPECIES U U+4 0.0 238.0290 238.0290 U(4) U+4 0.0 238.0290 U(5) UO2+ 0.0 238.0290 U(6) UO2+2 0.0 238.0290SOLUTION_SPECIES U+4 = U+4 log_k 0.0 U+4 + 4 H2O = U(OH)4 + 4 H+ log_k -8.538 delta_h 24.760 kcal U+4 + 5 H2O = U(OH)5- + 5 H+ log_k -13.147 delta_h 27.580 kcal U+4 + 2 H2O = UO2+ + 4 H+ + e- log_k -6.432 delta_h 31.130 kcal U+4 + 2 H2O = UO2+2 + 4 H+ + 2 e- log_k -9.217 delta_h 34.430 kcal UO2+2 + H2O = UO2OH+ + H+ log_k -5.782 delta_h 11.015 kcal 2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ log_k -5.626 delta_h -36.04 kcal 3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ log_k -15.641 delta_h -44.27 kcal UO2+2 + CO3-2 = UO2CO3 log_k 10.064 delta_h 0.84 kcal UO2+2 + 2CO3-2 = UO2(CO3)2-2 log_k 16.977 delta_h 3.48 kcal UO2+2 + 3CO3-2 = UO2(CO3)3-4 log_k 21.397 delta_h -8.78 kcalPHASES Uraninite UO2 + 4 H+ = U+4 + 2 H2O log_k -3.490 delta_h -18.630 kcalEND-TITLE- Example 1.-Add uranium and speciate seawater.-Beginning of initial solution calculations.-Initial solution 1.SEAWATER FROM NORDSTROM ET AL. (1979)-Solution composition-Elements Molality MolesAlkalinity 2.406e-03 2.406e-03Ca 1.066e-02 1.066e-02Cl 5.657e-01 5.657e-01Fe 3.711e-08 3.711e-08K 1.058e-02 1.058e-02Mg 5.507e-02 5.507e-02Mn 3.773e-09 3.773e-09N(-3) 1.724e-06 1.724e-06N(5) 4.847e-06 4.847e-06Na 4.854e-01 4.854e-01O(0) 3.746e-04 3.746e-04 Equilibrium with O2(g)S(6) 2.926e-02 2.926e-02Si 7.382e-05 7.382e-05U 1.437e-08 1.437e-08-Description of solution- pH = 8.220 pe = 8.451 Activity of water = 0.981 Ionic strength = 6.748e-01 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 2.180e-03 Total CO2 (mol/kg) = 2.180e-03 Temperature (deg C) = 25.000 Electrical balance (eq) = 7.936e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 7 Total H = 1.110147e+02 Total O = 5.563047e+01-Redox couples-Redox couple pe Eh (volts)N(-3)/N(5) 4.6737 0.2765O(-2)/O(0) 12.3893 0.7329-Distribution of species- Log Log Log Species Molality Activity Molality Activity GammaOH- 2.674e-06 1.629e-06 -5.573 -5.788 -0.215H+ 7.981e-09 6.026e-09 -8.098 -8.220 -0.122H2O 5.551e+01 9.806e-01 -0.009 -0.009 0.000C(4) 2.180e-03HCO3- 1.514e-03 1.023e-03 -2.820 -2.990 -0.170MgHCO3+ 2.195e-04 1.640e-04 -3.658 -3.785 -0.127NaHCO3 1.667e-04 1.948e-04 -3.778 -3.710 0.067MgCO3 8.913e-05 1.041e-04 -4.050 -3.982 0.067NaCO3- 6.718e-05 5.020e-05 -4.173 -4.299 -0.127CaHCO3+ 4.597e-05 3.106e-05 -4.337 -4.508 -0.170CO3-2 3.821e-05 7.959e-06 -4.418 -5.099 -0.681CaCO3 2.725e-05 3.183e-05 -4.565 -4.497 0.067CO2 1.210e-05 1.413e-05 -4.917 -4.850 0.067UO2(CO3)3-4 1.255e-08 1.183e-10 -7.901 -9.927 -2.025UO2(CO3)2-2 1.814e-09 5.653e-10 -8.741 -9.248 -0.506MnCO3 2.696e-10 3.150e-10 -9.569 -9.502 0.067MnHCO3+ 6.077e-11 4.541e-11 -10.216 -10.343 -0.127UO2CO3 7.429e-12 8.678e-12 -11.129 -11.062 0.067FeCO3 1.952e-20 2.281e-20 -19.709 -19.642 0.067FeHCO3+ 1.635e-20 1.222e-20 -19.786 -19.913 -0.127Ca 1.066e-02Ca+2 9.504e-03 2.380e-03 -2.022 -2.623 -0.601CaSO4 1.083e-03 1.265e-03 -2.965 -2.898 0.067CaHCO3+ 4.597e-05 3.106e-05 -4.337 -4.508 -0.170CaCO3 2.725e-05 3.183e-05 -4.565 -4.497 0.067CaOH+ 8.604e-08 6.429e-08 -7.065 -7.192 -0.127Cl 5.657e-01Cl- 5.657e-01 3.528e-01 -0.247 -0.452 -0.205MnCl+ 9.582e-10 7.160e-10 -9.019 -9.145 -0.127MnCl2 9.439e-11 1.103e-10 -10.025 -9.958 0.067MnCl3- 1.434e-11 1.071e-11 -10.844 -10.970 -0.127FeCl+2 9.557e-19 2.978e-19 -18.020 -18.526 -0.506FeCl2+ 6.281e-19 4.693e-19 -18.202 -18.329 -0.127FeCl+ 7.786e-20 5.817e-20 -19.109 -19.235 -0.127FeCl3 1.417e-20 1.656e-20 -19.849 -19.781 0.067Fe(2) 6.909e-19Fe+2 5.205e-19 1.195e-19 -18.284 -18.923 -0.639FeCl+ 7.786e-20 5.817e-20 -19.109 -19.235 -0.127FeSO4 4.845e-20 5.660e-20 -19.315 -19.247 0.067FeCO3 1.952e-20 2.281e-20 -19.709 -19.642 0.067FeHCO3+ 1.635e-20 1.222e-20 -19.786 -19.913 -0.127FeOH+ 8.227e-21 6.147e-21 -20.085 -20.211 -0.127FeHSO4+ 3.000e-27 2.242e-27 -26.523 -26.649 -0.127Fe(3) 3.711e-08Fe(OH)3 2.841e-08 3.318e-08 -7.547 -7.479 0.067Fe(OH)4- 6.591e-09 4.924e-09 -8.181 -8.308 -0.127Fe(OH)2+ 2.118e-09 1.583e-09 -8.674 -8.801 -0.127FeOH+2 9.425e-14 2.937e-14 -13.026 -13.532 -0.506FeSO4+ 1.093e-18 8.167e-19 -17.961 -18.088 -0.127FeCl+2 9.557e-19 2.978e-19 -18.020 -18.526 -0.506FeCl2+ 6.281e-19 4.693e-19 -18.202 -18.329 -0.127Fe+3 3.509e-19 2.796e-20 -18.455 -19.554 -1.099Fe(SO4)2- 6.371e-20 4.760e-20 -19.196 -19.322 -0.127FeCl3 1.417e-20 1.656e-20 -19.849 -19.781 0.067Fe2(OH)2+4 2.462e-24 2.322e-26 -23.609 -25.634 -2.025FeHSO4+2 4.228e-26 1.318e-26 -25.374 -25.880 -0.506Fe3(OH)4+5 1.122e-29 7.679e-33 -28.950 -32.115 -3.165H(0) 0.000e+00H2 0.000e+00 0.000e+00 -44.436 -44.369 0.067K 1.058e-02K+ 1.041e-02 6.494e-03 -1.982 -2.187 -0.205KSO4- 1.639e-04 1.225e-04 -3.785 -3.912 -0.127KOH 3.137e-09 3.664e-09 -8.504 -8.436 0.067Mg 5.507e-02Mg+2 4.742e-02 1.371e-02 -1.324 -1.863 -0.539MgSO4 7.330e-03 8.562e-03 -2.135 -2.067 0.067MgHCO3+ 2.195e-04 1.640e-04 -3.658 -3.785 -0.127MgCO3 8.913e-05 1.041e-04 -4.050 -3.982 0.067MgOH+ 1.084e-05 8.100e-06 -4.965 -5.092 -0.127Mn(2) 3.773e-09Mn+2 2.171e-09 4.982e-10 -8.663 -9.303 -0.639MnCl+ 9.582e-10 7.160e-10 -9.019 -9.145 -0.127MnCO3 2.696e-10 3.150e-10 -9.569 -9.502 0.067MnSO4 2.021e-10 2.360e-10 -9.695 -9.627 0.067MnCl2 9.439e-11 1.103e-10 -10.025 -9.958 0.067MnHCO3+ 6.077e-11 4.541e-11 -10.216 -10.343 -0.127MnCl3- 1.434e-11 1.071e-11 -10.844 -10.970 -0.127MnOH+ 2.789e-12 2.084e-12 -11.555 -11.681 -0.127Mn(NO3)2 1.375e-20 1.606e-20 -19.862 -19.794 0.067Mn(3) 5.993e-26Mn+3 5.993e-26 4.349e-27 -25.222 -26.362 -1.139N(-3) 1.724e-06NH4+ 1.648e-06 9.272e-07 -5.783 -6.033 -0.250NH3 7.507e-08 8.769e-08 -7.125 -7.057 0.067N(5) 4.847e-06NO3- 4.847e-06 2.846e-06 -5.315 -5.546 -0.231Mn(NO3)2 1.375e-20 1.606e-20 -19.862 -19.794 0.067Na 4.854e-01Na+ 4.791e-01 3.387e-01 -0.320 -0.470 -0.151NaSO4- 6.053e-03 4.522e-03 -2.218 -2.345 -0.127NaHCO3 1.667e-04 1.948e-04 -3.778 -3.710 0.067NaCO3- 6.718e-05 5.020e-05 -4.173 -4.299 -0.127NaOH 3.117e-07 3.641e-07 -6.506 -6.439 0.067O(0) 3.746e-04O2 1.873e-04 2.188e-04 -3.727 -3.660 0.067S(6) 2.926e-02SO4-2 1.463e-02 2.664e-03 -1.835 -2.574 -0.740MgSO4 7.330e-03 8.562e-03 -2.135 -2.067 0.067NaSO4- 6.053e-03 4.522e-03 -2.218 -2.345 -0.127CaSO4 1.083e-03 1.265e-03 -2.965 -2.898 0.067KSO4- 1.639e-04 1.225e-04 -3.785 -3.912 -0.127HSO4- 2.089e-09 1.561e-09 -8.680 -8.807 -0.127MnSO4 2.021e-10 2.360e-10 -9.695 -9.627 0.067FeSO4+ 1.093e-18 8.167e-19 -17.961 -18.088 -0.127Fe(SO4)2- 6.371e-20 4.760e-20 -19.196 -19.322 -0.127FeSO4 4.845e-20 5.660e-20 -19.315 -19.247 0.067FeHSO4+2 4.228e-26 1.318e-26 -25.374 -25.880 -0.506FeHSO4+ 3.000e-27 2.242e-27 -26.523 -26.649 -0.127Si 7.382e-05H4SiO4 7.110e-05 8.306e-05 -4.148 -4.081 0.067H3SiO4- 2.720e-06 2.032e-06 -5.565 -5.692 -0.127H2SiO4-2 7.362e-11 2.294e-11 -10.133 -10.639 -0.506U(4) 1.040e-21U(OH)5- 1.040e-21 7.773e-22 -20.983 -21.109 -0.127U(OH)4 1.662e-25 1.941e-25 -24.779 -24.712 0.067U+4 0.000e+00 0.000e+00 -46.994 -49.020 -2.025U(5) 1.627e-18UO2+ 1.627e-18 1.216e-18 -17.789 -17.915 -0.127U(6) 1.437e-08UO2(CO3)3-4 1.255e-08 1.183e-10 -7.901 -9.927 -2.025UO2(CO3)2-2 1.814e-09 5.653e-10 -8.741 -9.248 -0.506UO2CO3 7.429e-12 8.678e-12 -11.129 -11.062 0.067UO2OH+ 3.386e-14 2.530e-14 -13.470 -13.597 -0.127UO2+2 3.019e-16 9.410e-17 -15.520 -16.026 -0.506(UO2)2(OH)2+2 1.780e-21 5.547e-22 -20.750 -21.256 -0.506(UO2)3(OH)5+ 2.908e-23 2.173e-23 -22.536 -22.663 -0.127-Saturation indices-Phase SI log IAP log KTAnhydrite -0.84 -5.20 -4.36 CaSO4Aragonite 0.61 -7.72 -8.34 CaCO3Calcite 0.76 -7.72 -8.48 CaCO3Chalcedony -0.51 -4.06 -3.55 SiO2Chrysotile 3.36 35.56 32.20 Mg3Si2O5(OH)4CO2(g) -3.38 -21.53 -18.15 CO2Dolomite 2.41 -14.68 -17.09 CaMg(CO3)2Fe(OH)3(a) 0.19 -3.42 -3.61 Fe(OH)3Goethite 6.09 -3.41 -9.50 FeOOHGypsum -0.63 -5.21 -4.58 CaSO4:2H2OH2(g) -41.22 1.82 43.04 H2Hausmannite 1.57 19.56 17.99 Mn3O4Hematite 14.20 -6.81 -21.01 Fe2O3Jarosite-K -7.52 -42.23 -34.71 KFe3(SO4)2(OH)6Manganite 2.39 6.21 3.82 MnOOHMelanterite -19.35 -21.56 -2.21 FeSO4:7H2OO2(g) -0.70 -3.66 -2.96 O2Pyrochroite -8.08 7.12 15.20 Mn(OH)2Pyrolusite 6.95 5.29 -1.66 MnO2:H2OQuartz -0.11 -4.06 -3.96 SiO2Rhodochrosite -3.27 -14.40 -11.13 MnCO3Sepiolite 1.16 16.92 15.76 Mg2Si3O7.5OH:3H2OSepiolite(d) -1.74 16.92 18.66 Mg2Si3O7.5OH:3H2OSiderite -13.13 -24.02 -10.89 FeCO3SiO2(a) -1.35 -4.06 -2.71 SiO2Talc 6.04 27.44 21.40 Mg3Si4O10(OH)2Uraninite -12.67 4.40 17.06 UO2-End of simulation.-模拟中的输出(表12)包含标题所描绘的几个信息块。首先,是运行的输入、输出、数据库文件的名字。其次,在标题“Reading data base”下列出了在读数据库中碰到的所有关键字。后面,输入数据在标题“Reading input data for simulation 1”下进行重复输出,不包括注释和空行。所有的输入数据以及END关键字构成了该模拟。在这个模拟中,TITLE关键字后面所碰到的任何注释都将打印在后面。名称后面是标题,“Beginning of initial solution calculations”,在它的下面是海水物质形成计算的结果。浓度数据,转化成重量摩尔数,在子标题“Solution composition”下所给出。对初始溶液计算而言,溶液中的摩尔数目在数字上等于它的重量摩尔数,这是因为假定的是1kg的水。标识符-water是用来定义溶液中不同质量的水。在批反应计算中,水的质量可发生变化,液相中的摩尔数不会准确地等于组分的重量摩尔数。注意,产生分压力对数为-0.7的溶解氧的重量摩尔数已被计算,并且在输出中会加以解释。在子标题“Description of solution”之后,在输出的第一个数据块中所列出的一些属性等于它们的输入值,另一些是计算值。在这个例子中,pH,pe和温度都等于它们的输入值。离子强度,总碳(碱度是输入数据),总无机碳(“Total CO2”),电子平衡,和百分误差在模拟计算中得到。在子标题“Redox couples”下面打印的是可获得的每个氧化还原电对的pe和Eh,在该例中,为铵/硝酸盐,以及水/溶解氧。在子标题“Distribution of species”下面,列出的是每种元素所有形态和价态的摩尔浓度、活度及活度系数。它的顺序是根据元素的字母顺序或是按每种元素的浓度或是元素化合价递减的顺序列出的。除了每种元素或元素的化合价,也给出了总摩尔数。最后,在子标题“Saturation indices”下,适于给出分析数据的矿物的饱和指数,在输出的末尾部分以物质的名字按子母顺序列出。饱和指数是在标有“SI”的栏中给出的,跟在后面的是的一栏是离子活度积的对数(“log IAP”)和溶解常数的对数(“log KT”)。每种物质的化学分子式都在右边栏中打出。注意,例如没有包括含铝的矿物,这是因为在分析数据中不包括铝。同样也注意,输出中也没有包括四方硫铁矿(FeS)和其它的硫化矿物,这是因为没有指定(S-2)的分析数据。如输入了S代替S(6)或S(-2)的浓度,那么这个S(-2)的浓度将会被加以计算,四方硫铁矿和其它硫化矿物的饱和指数也将得到计算。例2矿物相的溶解平衡这个例子测定了最稳定相石膏或是无水石膏在一定温度范围内的溶解性。输入数据组见表13。仅用pH和温度来定义纯水溶液。缺省单位是millimolal,但没有指定浓度。缺省状态下,pe为4.0,缺省的氧化还原计算使用pe,且水的密度为1.0(这是没有必要的,因为没有浓度为“每升”)。在批反应期间,所有允许反应达到指定的饱和指数的反应都列在EQUILIBRIUM_PHASES中,无论开始时它们是否存在。输入数据包含相的名字(之前通过PHASES输入在数据库或输入文件中定义)、指定的饱和指数和以摩尔数表示的当前
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!