新版新课标高三数学一轮复习 第11篇 第4节 直接证明与间接证明、数学归纳法课时训练 理

上传人:无*** 文档编号:62809896 上传时间:2022-03-16 格式:DOC 页数:8 大小:1.78MB
返回 下载 相关 举报
新版新课标高三数学一轮复习 第11篇 第4节 直接证明与间接证明、数学归纳法课时训练 理_第1页
第1页 / 共8页
新版新课标高三数学一轮复习 第11篇 第4节 直接证明与间接证明、数学归纳法课时训练 理_第2页
第2页 / 共8页
新版新课标高三数学一轮复习 第11篇 第4节 直接证明与间接证明、数学归纳法课时训练 理_第3页
第3页 / 共8页
点击查看更多>>
资源描述
1 1【导与练】(新课标)20xx届高三数学一轮复习 第11篇 第4节 直接证明与间接证明、数学归纳法课时训练 理【选题明细表】知识点、方法题号综合法2、5、8、10、14、16分析法3、7、11反证法1、9数学归纳法4、6、12、13、15基础过关一、选择题1.用反证法证明某命题时,对结论“自然数a,b,c中恰有一个偶数”正确的反设是(B)(A)自然数a,b,c中至少有两个偶数(B)自然数a,b,c中至少有两个偶数或都是奇数(C)自然数a,b,c都是奇数(D)自然数a,b,c都是偶数解析:“恰有一个偶数”反面应是“至少有两个偶数或都是奇数”.故选B.2.设x,y,z0,则三个数yx+yz,zx+zy,xz+xy(C)(A)都大于2(B)至少有一个大于2(C)至少有一个不小于2(D)至少有一个不大于2解析:由于yx+yz+zx+zy+xz+xy=(yx+xy)+(zx+xz)+(yz+zy)2+2+2=6,yx+yz,zx+zy,xz+xy中至少有一个不小于2.故选C.3.分析法又称执果索因法,若用分析法证明:“设abc,且a+b+c=0,求证b2-ac0 (B)a-c0(C)(a-b)(a-c)0(D)(a-b)(a-c)bc,且a+b+c=0可得b=-a-c,a0,c0.要证b2-ac3a,只要证(-a-c)2-ac0,即证a(a-c)+(a+c)(a-c)0,即证a(a-c)-b(a-c)0,即证(a-c)(a-b)0.故求证“b2-ac0.4.用数学归纳法证明不等式1+12+14+12n-112764成立,起始值至少应取为(B)(A)7(B)8(C)9(D)10解析:左边的和为1-12n1-12=2-21-n,当n=8时,和为2-2-712764.5.(20xx合肥一模)对于函数f(x),若a,b,cR,f(a),f(b),f(c)都是某一三角形的三边长,则称f(x)为“可构造三角形函数”.以下说法正确的是(D)(A)f(x)=1(xR)不是“可构造三角形函数”(B)“可构造三角形函数”一定是单调函数(C)f(x)=1x2+1(xR)是“可构造三角形函数”(D)若定义在R上的函数f(x)的值域是e,e(e为自然对数的底数),则f(x)一定是“可构造三角形函数”解析:对于A选项,由题设所给的定义知,a,b,cR,f(a),f(b),f(c)都是某一正三角形的三边长,是“可构造三角形函数”,故A选项错误;对于B选项,由A选项判断过程知,B选项错误;对于C选项,当a=0,b=3,c=3时,f(a)=1f(b)+f(c)=15,不构成三角形,故C错误;对于D选项,由于e+ee,可知,定义在R上的函数f(x)的值域是e,e(e为自然对数的底数),则f(x)一定是“可构造三角形函数”.6.(20xx青岛市高三月考)用数学归纳法证明1n+1+1n+2+12n1134时,由k到k+1,不等式左边的变化是(C)(A)增加12(k+1)项(B)增加12k+1和12k+2两项(C)增加12k+1和12k+2两项同时减少1k+1项(D)以上结论都不对解析:n=k时,左边=1k+1+1k+2+1k+kn=k+1时,左边=1(k+1)+1+1(k+1)+2+1(k+1)+(k+1),由“n=k”变成“n=k+1”时,不等式左边的变化是12k+1+12k+2-1k+1.二、填空题7.设ab0,m=a-b,n=a-b,则m,n的大小关系是.解析:法一取a=2,b=1,得mn.法二a-baa0,显然成立,故mn.答案:mn8.已知点An(n,an)为函数y=x2+1图象上的点,Bn(n,bn)为函数y=x图象上的点,其中nN*,设cn=an-bn,则cn与cn+1的大小关系为.解析:由条件得cn=an-bn=n2+1-n=1n2+1+n,cn随n的增大而减小.cn+1cn.答案:cn+10,求证:a2+1a2-2a+1a-2.证明:要证a2+1a2-2a+1a-2.只要证a2+1a2+2a+1a+2.a0,故只要证a2+1a2+22a+1a+22,即a2+1a2+4a2+1a2+4a2+2+1a2+22a+1a+2,从而只要证2a2+1a22a+1a,只要证4a2+1a22a2+2+1a2,即a2+1a22,而上述不等式显然成立,故原不等式成立.12.(20xx湖南常德模拟)设a0,f(x)=axa+x,令a1=1,an+1=f(an),nN*.(1)写出a2,a3,a4的值,并猜想数列an的通项公式;(2)用数学归纳法证明你的结论.(1)解:a1=1,a2=f(a1)=f(1)=a1+a;a3=f(a2)=a2+a;a4=f(a3)=a3+a.猜想an=a(n-1)+a(nN*).(2)证明:易知,n=1时,猜想正确.假设n=k时猜想正确,即ak=a(k-1)+a,则ak+1=f(ak)=aaka+ak=aa(k-1)+aa+a(k-1)+a=a(k-1)+a+1=a(k+1)-1+a.这说明,n=k+1时猜想正确.由知,对于任何nN*,都有an=a(n-1)+a.能力提升13.(20xx安庆高三月考)用数学归纳法证明2nn2(n5,nN+),第一步应验证(B)(A)n=4(B)n=5(C)n=6(D)n=7解析:根据数学归纳法的步骤,首先要验证当n取第一个值时命题成立;又n5,所以第一步验证n=5.14.已知三个不等式ab0;cadb;bcad.以其中两个作条件,余下一个作结论,则可组成个正确命题.解析:此题共可组成三个命题即;.若ab0,cadb,则ca-db=bc-adab0,得bc-ad0,即可得命题正确;若ab0,bcad,则bc-adab=ca-db0,得cadb,即命题正确;若bcad,cadb,则ca-db=bc-adab0,得ab0,即命题正确.综上可得正确的命题有三个.答案:三15.数列an满足Sn=2n-an(nN+)(1)计算a1,a2,a3,a4;(2)猜想通项公式an,并用数学归纳法证明.解:(1)由a1=2-a1,得a1=1,由a1+a2=22-a2,得a2=32,由a1+a2+a3=23-a3,得a3=74,由a1+a2+a3+a4=24-a4,得a4=158.(2)猜想an=2n-12n-1(nN+).证明如下:当n=1,由上面计算可知猜想成立;假设n=k时猜想成立,即ak=2k-12k-1,此时Sk=2k-ak=2k-2k-12k-1,当n=k+1时,Sk+1=2(k+1)-ak+1,得Sk+ak+1=2(k+1)-ak+1.因此ak+1=122(k+1)-Sk=k+1-12(2k-2k-12k-1)=2k+1-12(k+1)-1.当n=k+1时也成立,an=2n-12n-1(nN+).探究创新16.设集合W是满足下列两个条件的无穷数列an的集合:an+an+22an+1;anM,其中nN*,M是与n无关的常数.(1)若an是等差数列,Sn是其前n项的和,a3=4,S3=18,试探究Sn与集合W之间的关系;(2)设数列bn的通项公式为bn=5n-2n,且bnW,M的最小值为m,求m的值;(3)在(2)的条件下,设Cn=15bn+(m-5)n+2,求证:数列Cn中任意不同的三项都不能成为等比数列.(1)解:a3=4,S3=18,a1=8,d=-2.Sn=-n2+9n.Sn+Sn+22Sn+1满足条件,Sn=-(n-92)2+814,当n=4或5时,Sn取最大值20.Sn20满足条件,SnW.(2)解:bn=5n-2n可知bn中最大项是b3=7,M7,M的最小值为7.即m=7.(3)证明:由(2)知Cn=n+2,假设Cn中存在三项cp,cq,cr(p,q,r互不相等)成等比数列,则cq2=cpcr,(q+2)2=(p+2)(r+2),(q2-pr)+(2q-p-r)2=0,p,q,rN*,q2=pr,2q-p-r=0.消去q得(p-r)2=0,p=r,与pr矛盾.Cn中任意不同的三项都不能成为等比数列.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!