热力第二章第一部分ppt课件

上传人:仙*** 文档编号:52192431 上传时间:2022-02-07 格式:PPT 页数:77 大小:1.42MB
返回 下载 相关 举报
热力第二章第一部分ppt课件_第1页
第1页 / 共77页
热力第二章第一部分ppt课件_第2页
第2页 / 共77页
热力第二章第一部分ppt课件_第3页
第3页 / 共77页
点击查看更多>>
资源描述
第二章第二章热力学第一定律热力学第一定律The First Law of Thermodynamics2-1 热力学第一定律的本质热力学第一定律的本质 1909年,年,C. Caratheodory最后完善热一律最后完善热一律本质:本质:能量能量转换转换及及守恒守恒定律定律在热过程中的应用在热过程中的应用 18世纪初,工业革命,热效率只有世纪初,工业革命,热效率只有1% 1842年,年,J.R. Mayer阐述热一律,但没有阐述热一律,但没有 引起重视引起重视 1840-1849年,年,Joule用多种实验的一致性用多种实验的一致性 证明热一律,于证明热一律,于1950年发表并得到公认年发表并得到公认Conservation of energyOne of the most fundamental laws of nature“During an interaction , energy can change from one form to another but the total amount of energy remains constant”Energy cannot be created or destroyed焦耳实验焦耳实验1、重物下降,输重物下降,输 入功,绝热容入功,绝热容 器内气体器内气体 T 2、绝热去掉,气绝热去掉,气 体体 T ,放出,放出 热给水,热给水,T 恢复恢复 原温。原温。焦耳实验焦耳实验水温升高可测得水温升高可测得热量热量, 重物下降可测得重物下降可测得功功热功当量热功当量1 cal = 4.1868 kJ工质经历循环工质经历循环:WQMechanical equivalent of heat闭口系循环的热一律表达式闭口系循环的热一律表达式要想得到要想得到功功,必须化费,必须化费热能热能或或其它能量其它能量热一律热一律又可表述为又可表述为“第一类永动机是第一类永动机是 不可能制成的不可能制成的”WQPerpetual motion machine of the first kindQPerpetual motion machine of the first kind锅锅炉炉汽轮机汽轮机发电机发电机给水泵给水泵凝凝汽汽器器WnetQout电电加加热热器器2-2 2-2 热一律的推论热一律的推论内能内能内能内能的导出的导出闭口系循环闭口系循环0QW QW蜒Internal energy内能的导出内能的导出对于循环对于循环1a2c11 22 1()()0acQWQW对于循环对于循环1b2c11 22 1()()0bcQWQW1 21 2()()abQWQW0QW 状态参数状态参数pV12abc内能及闭口内能及闭口系热一律表达式系热一律表达式定义定义 dU = Q - W 内能内能U 状态函数状态函数 Q = dU + WQ = U + W闭口系闭口系热一律表达式热一律表达式!两种特例两种特例 绝功系绝功系 Q = dU 绝热系绝热系 W = - dU内能内能U 的物理意义的物理意义dU = Q - W W Q dU 代表某微元过程中系统通过边界代表某微元过程中系统通过边界交换的交换的微热量微热量与与微功量微功量两者之差值,也两者之差值,也即即系统内部能量系统内部能量的变化。的变化。 U 代表储存于系统代表储存于系统内部的能量内部的能量 内储存能内储存能(内能内能、热力学能热力学能)内能的组成内能的组成分子动能分子动能分子位能分子位能 binding forces化学能化学能 chemical energy核能核能 nuclear energy内能内能microscopic forms of energy 移动移动 translation转动转动 rotation振动振动 vibration系统总能系统总能 total energy外部储存能外部储存能macroscopic forms of energy宏观动能宏观动能 kinetic Ek= mc2/2宏观位能宏观位能 potential Ep= mgz机械能机械能系统总能系统总能E = U + Ek + Epe = u + ek + ep一般与系统同坐标,常用一般与系统同坐标,常用U, dU, u, du内能的说明内能的说明 内能内能是状态量是状态量 state property U : : 广延参数广延参数 kJ u : : 比参数比参数 kJ/kg 内能内能总以变化量出现,总以变化量出现,内能内能零点人为定零点人为定热一律的文字表达式热一律的文字表达式热一律热一律: 能量守恒与转换定律能量守恒与转换定律=进入进入系统系统的的能量能量离开离开系统系统的的能量能量系统系统内部储存内部储存能量能量的的变化变化-Total energy entering the systemTotal energy leaving the systemChange in the total energy of the system=-2-3 闭口系能量方程闭口系能量方程 W Q一般式一般式 Q = dU + W Q = U + W q = du + w q = u + w单位工质单位工质适用条件:适用条件: 1)任何工质)任何工质 2) 任何过程任何过程Energy balance for closed systemPoint function-Exact differentials- dPath function-Inexact differentials- 闭口系能量方程中的功闭口系能量方程中的功功功 ( w) 是广义功是广义功 闭口系与外界交换的功量闭口系与外界交换的功量 q = du + w准静态容积变化功准静态容积变化功 pdv拉伸功拉伸功 w拉伸拉伸= - dl表面张力功表面张力功 w表面张力表面张力= - dA w = pdv - dl - dA +.闭口系能量方程的通式闭口系能量方程的通式 q = du + w若在地球上研究飞行器若在地球上研究飞行器 q = de + w = du + dek + dep + w 工程热力学用此式较少工程热力学用此式较少准静态和可逆闭口系能量方程准静态和可逆闭口系能量方程简单可压缩系简单可压缩系准静态过程准静态过程 w = pdv简单可压缩系简单可压缩系可逆过程可逆过程 q = Tds q = du + pdv q = u + pdv热一律解析式之一热一律解析式之一Tds = du + pdv Tds = u + pdv热力学恒等式热力学恒等式门窗紧闭房间用电冰箱降温门窗紧闭房间用电冰箱降温以房间为以房间为系统系统 绝热闭口系绝热闭口系闭口系能量方程闭口系能量方程QU W0Q0UW0W T电电冰冰箱箱RefrigeratorIcebox门窗紧闭房间用空调降温门窗紧闭房间用空调降温以房间为以房间为系统系统 闭口系闭口系闭口系能量方程闭口系能量方程QU W0QUQ W0W T空空调调 QQWAir-condition 2-4 开口系能量方程开口系能量方程 Wnet Q min moutuinuoutgzingzout212inc212outc能量守恒原则能量守恒原则进入进入系统的系统的能量能量 - -离开离开系统的系统的能量能量 = =系统系统储存能量储存能量的的变化变化Energy balance for open system推进功的引入推进功的引入 Wnet Q min moutuinuoutgzingzout212inc212outc Q + min(u + c2/2 + gz)in- mout(u + c2/2 + gz)out - Wnet = dEcv这个结果与实验这个结果与实验不符不符少了少了推进功推进功推进功的表达式推进功的表达式推进功推进功(流动功、推动功)(流动功、推动功)pApVdl W推推 = p A dl = pV w推推= pv注意:注意: 不是不是 pdv v 没有变化没有变化Flow work对推进功的说明对推进功的说明1 1、与宏观与宏观流动流动有关,流动停止,推进功不存在有关,流动停止,推进功不存在2 2、作用过程中,工质仅发生作用过程中,工质仅发生位置位置变化,无状态变化变化,无状态变化3 3、w推推pv与所处状态有关,是与所处状态有关,是状态量状态量4 4、并非工质本身的能量(动能、位能)变化引起,并非工质本身的能量(动能、位能)变化引起, 而由外界做出,流动工质所而由外界做出,流动工质所携带的能量携带的能量可理解为:可理解为:由于工质的进出,外界与系统之由于工质的进出,外界与系统之间所传递的一种间所传递的一种机械功机械功,表现为流动工质进,表现为流动工质进出系统使所出系统使所携带携带和所和所传递传递的一种的一种能量能量开口系能量方程的推导开口系能量方程的推导 Wnet Qpvin moutuinuoutgzingzout212inc212outc Q + min(u + c2/2 + gz)in- mout(u + c2/2 + gz)out - Wnet = dEcv minpvout开口系能量方程微分式开口系能量方程微分式 Q + min(u + pv+c2/2 + gz)in - Wnet - mout(u + pv+c2/2 + gz)out = dEcv工程上常用工程上常用流率流率0limQQ0limmm0limWW2cvout2innetind/ 2/ 2outQEupvcgzmupvcgzmW开口系能量方程微分式开口系能量方程微分式当有多条进出口:当有多条进出口:netcv2outout2inind/ 2/ 2QEWupvcgzmupvcgzm流动时,总一起存在流动时,总一起存在焓焓Enthalpy的引入的引入定义:定义:焓焓 h = u + pvnetcv2outout2inind/ 2/ 2QEWupvcgzmupvcgzmhh开口系能量方程开口系能量方程焓焓Enthalpy的的 说明说明 定义:定义:h = u + pv kJ/kg H = U + pV kJ 1、焓焓是状态量是状态量 state property2、H为广延参数为广延参数 H=U+pV= m(u+pv)= mh h为比参数为比参数3、对流动工质,对流动工质,焓焓代表能量代表能量(内能内能+推进功推进功) 对静止工质,对静止工质,焓焓不代表不代表能量能量4 4、物理意义:开口系中随工质物理意义:开口系中随工质流动而携带流动而携带的、取决的、取决 于热力状态的于热力状态的能量能量。2-5 稳定流动能量方程稳定流动能量方程 Wnet Q min moutuinuoutgzingzout212inc212outc稳定流动条件稳定流动条件1、outinmmm2、QConst3、netsWConstW轴功轴功Shaft work每截面状态不变每截面状态不变4、,/0C VdEEnergy balance for steady-flow systems稳定流动能量方程的推导稳定流动能量方程的推导outinmmmQConstnetsWConstW,/0C VdEnetcv2outout2inind/ 2/ 2QEWhcgzmhcgzm稳定流动条件稳定流动条件0mmsW稳定流动能量方程的推导稳定流动能量方程的推导22soutin22ccQmhgzhgzWQm qssWm w1kg工质工质22soutin22ccqhgzhgzw2s12qhcgzw 稳定流动能量方程稳定流动能量方程2s12qhcgzw 适用条件:适用条件:任何流动工质任何流动工质任何稳定流动过程任何稳定流动过程Energy balance for steady-flow systems技术功技术功 technology work动能动能工程技术上可以直接利用工程技术上可以直接利用轴功轴功机械能机械能2f12sQHmcm gzW 2f12sqhcgzw 位能位能tWtwtQmhWtqhw 单位质量工质的开口与闭口单位质量工质的开口与闭口wsq稳流开口系稳流开口系tqhw quw 闭口系闭口系(1kg)容积变化功容积变化功等价等价技术功技术功稳流开口与闭口的能量方程稳流开口与闭口的能量方程tqhw 容积变化功容积变化功w技术功技术功wtquw 闭口闭口稳流开口稳流开口等价等价轴功轴功ws推进功推进功 (pv)几种功的关系?几种功的关系?几种功的关系几种功的关系2t12swcgzwt()tqhwupvw quw ()twpvwwwt(pv) c2/2wsgz做功的根源做功的根源ws对功的小结对功的小结2、开口系,系统与外界交换的功为开口系,系统与外界交换的功为轴功轴功ws3、一般情况下忽略动、位能的变化一般情况下忽略动、位能的变化1、闭口系,系统与外界交换的功为闭口系,系统与外界交换的功为容积变化功容积变化功wws wt准静态下的技术功准静态下的技术功()tpdvd pvw()twpvw()twd pvw准静态准静态()()twpdv d pvpdvpdv vdpvdptwvdp准静态准静态qdupdvqdh vdp热一律解析式之一热一律解析式之一热一律解析式之二热一律解析式之二twvdp技术功在示功图上的表示技术功在示功图上的表示1 12 2ddv pp vpvp vt1 12 2wwpvp vt()wwpv12 1ba12341 140 1a 230 2b机械能守恒机械能守恒s2t2/wgdzdcvdpw对于流体流过管道,对于流体流过管道,0sw2102vdpdcgdz 压力能压力能 动能动能 位能位能机械能守恒机械能守恒2102dpdcdzgg柏努利方程柏努利方程Bernoullis equation 2-6 稳定流动能量方程应用举例稳定流动能量方程应用举例s22/wzgchq热力学问题经常可忽略动、位能变化热力学问题经常可忽略动、位能变化例:例:c1 = 1 m/s c2 = 30 m/s (c22 - c12) / 2 = 0.449 kJ/ kgz1 = 0 m z2 = 30 mg ( z2 - z1) = 0.3 kJ/kg1bar下下, 0 oC水的水的 h1 = 84 kJ/kg100 oC水蒸气的水蒸气的 h2 = 2676 kJ/kgsqhw 例例1:透平:透平(Turbine)机械机械火力发电火力发电核电核电飞机发动机飞机发动机轮船发动机轮船发动机移动电站移动电站 燃气轮机燃气轮机蒸汽轮机蒸汽轮机Steam turbineGas turbine透平透平(Turbine)机械机械sqhw 1) 体积不大体积不大2)流量大流量大3)保温层保温层q 0ws = -h = h1 - h20输出的轴功是靠焓降转变的输出的轴功是靠焓降转变的例例2:压缩机械:压缩机械 Compressor火力发电火力发电核电核电飞机发动机飞机发动机轮船发动机轮船发动机移动电站移动电站 压气机压气机水泵水泵制冷制冷空调空调压缩机压缩机压缩机械压缩机械sqhw 1) 体积不大体积不大2)流量大流量大3)保温层保温层q 0ws = -h = h1 - h20输入的轴功转变为焓升输入的轴功转变为焓升例例3:换热设备:换热设备Heat Exchangers火力发电:火力发电:锅炉、凝汽器锅炉、凝汽器核电:核电:热交换器、凝汽器热交换器、凝汽器制冷制冷空调空调蒸发器、冷凝器蒸发器、冷凝器换热设备换热设备热流体放热量:热流体放热量:没有作功部件没有作功部件sqhw 热流体热流体冷流体冷流体h1h2s0w 21qhhh h1h2210qhhh 冷流体吸热量:冷流体吸热量:210qhhh 焓变焓变例例4:绝热节流:绝热节流Throttling Valves管道阀门管道阀门制冷制冷空调空调膨胀阀、毛细管膨胀阀、毛细管绝热节流绝热节流绝热节流过程,前后绝热节流过程,前后h不变不变,但,但h不是处处相等不是处处相等h1h2sqhw 没有作功部件没有作功部件s0w 绝热绝热0q 0h12hh例例5:喷管和扩压管:喷管和扩压管火力发电火力发电蒸汽轮机静叶蒸汽轮机静叶核电核电飞机发动机飞机发动机轮船发动机轮船发动机移动电站移动电站 压气机静叶压气机静叶Nozzles and Diffusers 喷管和扩压管喷管和扩压管喷管目的:喷管目的: 压力降低,速度提高压力降低,速度提高扩压管目的:扩压管目的:动能与焓变相互转换动能与焓变相互转换速度降低,压力升高速度降低,压力升高动能参与转换,不能忽略动能参与转换,不能忽略s0w 0q s22/wzgchq0gz212ch 第二章第二章 小结小结 Summary1、本质:本质:能量守恒与转换定律能量守恒与转换定律=进入进入系统系统的的能量能量离开离开系统系统的的能量能量系统系统内部储存内部储存能量能量的的变化变化-第二章第二章 小结小结2outcvout2innetind/2/2QEhcgzmhcgzmW通用式通用式2、热一律表达式:热一律表达式:cvnet2outout2inind/2/2QEWhcgzmhcgzm第二章第二章 小结小结稳流:稳流:mmminoutdEcv / = 0s22/wzgchqtqhw 2outcvout2innetind/2/2QEhcgzmhcgzmW通用式通用式第二章第二章 小结小结闭口系:闭口系:outin0mm2outcvout2innetind/2/2QEhcgzmhcgzmW通用式通用式netcvd/QEWQdEW第二章第二章 小结小结 2outcvout2innetind/2/2QEhcgzmhcgzmW通用式通用式循环循环dEcv = 0out = inQW蜒QW蜒第二章第二章 小结小结孤立系:孤立系: 2outcvout2innetind/2/2QEhcgzmhcgzmW通用式通用式netoutin0QWmm0isodE第二章第二章 小结小结3、热力学第一定律表达式和适用条件、热力学第一定律表达式和适用条件任何工质,任何过程任何工质,任何过程quw dqup v 任何工质,准静态过程任何工质,准静态过程s22/wzgchq任何工质,任任何工质,任何稳流过程何稳流过程sqhw 或或tqhw 忽略动、位忽略动、位能变化能变化第二章第二章 小结小结qdupdvdhvdp4、准静态下两个热力学微分关系式准静态下两个热力学微分关系式 适合于闭口系统和稳流开口系统适合于闭口系统和稳流开口系统后续很多式子基于此两式后续很多式子基于此两式第二章第二章 小结小结5、u与与 h U, H 广延参数广延参数 u, h 比参数比参数 U 系统本身具有的内部能量系统本身具有的内部能量H 不是系统本身具有的能量,不是系统本身具有的能量, 开口系中随工质流动而携带的,取开口系中随工质流动而携带的,取 决于状态参数的能量决于状态参数的能量 第二章第二章 小结小结6、四种功的关系四种功的关系 准静态下准静态下2t12swcgzw()twpvwtwvdpwpdv闭口系过程闭口系过程开口系过程开口系过程第二章第二章 讨论课讨论课 Discussion思考题思考题 工质膨胀是否一定对外作功?工质膨胀是否一定对外作功?做功对象和做功部件做功对象和做功部件定容过程是否一定不作功?定容过程是否一定不作功?开口系,技术功开口系,技术功定温过程是否一定不传热?定温过程是否一定不传热?相变过程(冰融化,水汽化)相变过程(冰融化,水汽化)twvdp水轮机水轮机第二章第二章 讨论课讨论课气体被压缩时一定消耗外功气体被压缩时一定消耗外功热力学功指有用功热力学功指有用功p00WpdVp dV对外作功指有用功对外作功指有用功第二章第二章 讨论课讨论课气体边膨胀边放气体边膨胀边放热是可能的热是可能的tQH W对工质加热,其温度反而降低,对工质加热,其温度反而降低,这种情况不可能这种情况不可能QU W000第二章第二章 小结小结循环循环121 2aUU121 2aWW1 21 21 2aaaQUW121212QUW思考题思考题4附图附图121 2aQQ121 2tt aWW121 2aHH 121212tQHW1 21 21 2aat aQHW0U 0H tWWQ蜒P q 例:例:2-142-147m671mmm1m7771166m hm qm hm hP充气问题与取系统充气问题与取系统习题习题2-9 储气罐原有气体储气罐原有气体m0,u0输气管状态不变,输气管状态不变,h经经 时间充时间充气,关阀气,关阀储气罐中气体储气罐中气体m求:求:储气罐中气体储气罐中气体内能内能u 忽略动、位能变化,且管路、忽略动、位能变化,且管路、储气罐、阀门均绝热储气罐、阀门均绝热m0,u0h四种可取系统四种可取系统1)取储气罐为系统取储气罐为系统开口系开口系2)取最终罐中气体为系统取最终罐中气体为系统闭口系闭口系3)取将进入储气罐的气体为系统取将进入储气罐的气体为系统m0,u0h闭口系闭口系4)取储气罐原有气体为系统取储气罐原有气体为系统闭口系闭口系1)1)取取储气罐为储气罐为系统系统( (开口系开口系) )忽略动位能变化忽略动位能变化hcvnet2outout2inind/2/2QEWhcgzmhcgzm绝热绝热无作功部件无作功部件无离开气体无离开气体cvin0dEh mcvindUh m1)1)取取储气罐为储气罐为系统系统( (开口系开口系) )经经 时间充气,积分概念时间充气,积分概念hh是常数是常数cvindUh m0 00cvinmumm umdUh m000()mum uh mm000()h mmm uum2 2)取最终罐中气体为系统)取最终罐中气体为系统( (闭口系闭口系)hm0m-m0QUW 绝热绝热000()Umum umm u0()Wmmpv 0000()()0mum umm ummpv000()0mum umm h000()h mmm uumm-m03 3)取将进入储气罐的气体为系统)取将进入储气罐的气体为系统( (闭口系闭口系)m0hm-m0QUW m0与与m-m0有温差传热有温差传热Q100() ()Umm umm u01()WmmpvW m-m0对对m0作功作功W110001() ()()Qmm umm ummpvW1001() ()Qmm umm hW?m-m04 4)取储气罐)取储气罐原有原有气体为系统气体为系统( (闭口系闭口系)m0hm-m0QUW m0与与m-m0有温差传热有温差传热Q1000Um um um0得得m-m0作功作功W110001Qm um uW1001() ()Qmm umm hW?11QQ 11WW 4 4)取储气罐)取储气罐原有原有气体为系统气体为系统( (闭口系闭口系)m0hm-m010001Qm um uW1001() ()Qmm umm hW11QQ 11WW 1111()QWQW 00000() ()()mm umm hm um u 000()mum umm h000()h mmm uum利用热一律的文字表达式利用热一律的文字表达式进进 出出 内能变化内能变化h内能变化:内能变化:0()mm h000()h mmm uum取储气罐为系统取储气罐为系统( (开口系开口系) )进:进:出:出:000mum um0,u0
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!