资源描述
精品文档14.2 平面直角坐标系1.点P(1,-2)在平面直角坐标系中所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在平面直角坐标系中,点P(2,x2)在( ) A.第一象限 B.第四象限 C.第一或者第四象限 D.以上说法都不对3.点P(4,-3)到x轴的距离是_个单位长度,到y轴的距离是_个单位长度.4.平面直角坐标系内有一点P(x,y),假设点P在横轴上,那么_;假设点P在纵轴上,那么_;假设P为坐标原点,那么_.5.写出图中A,B,C,D,E,F,O各点的坐标.6.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),那么第四个顶点的坐标为( ) A.(2,2) B.(3,2) C.(2,-3) D.(2,3)7.如下图的平面直角坐标系中,把以下各组点描出来,并顺次连接各点.(0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),0,-4.8.将边长为1的正方形ABCD放在直角坐标系中,使C的坐标为(,).请建立直角坐标系,并求其余各点的坐标.9.在平面直角坐标系中描出点A(-3,3),B(-3,-1),C(2,-1),D(2,3),用线段顺次连接各点,看它是什么样的几何图形?并求出它的面积.10.如果点P(m+3,m+1)在直角坐标系的x轴上,那么P点坐标为( ) A.(0,2) B.(2,0) C.(4,0) D.(0,-4)11.坐标平面内点M(a,b)在第三象限,那么点N(b,-a)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限12.点A的坐标(x,y)满足(x+3)2+|y+2|=0,那么点A的位置在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限13.平面直角坐标系内ABy轴,AB=5,点A坐标为(-5,3),那么点B坐标为( ) A.(-5,8) B.(0,3) C.(-5,8)或(-5,-2) D.(0,3)或(-10,3)14.P点坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,那么点P的坐标是_.15.ABx轴,A点的坐标为(3,2),并且AB5,那么B点的坐标为_.16.点A(-5,0),点B(3,0),点C在y轴上,ABC的面积为12,那么点C的坐标为_.17.点P(m,n)到x轴的距离为3,到y轴的距离等于5,那么点P的坐标是_.18.如图,A,B两村庄的坐标分别为(2,2),(7,4),一辆汽车在x轴上行驶,从原点O出发. (1)汽车行驶到什么位置时离A村最近?写出此点的坐标; (2)汽车行驶到什么位置时离B村最近?写出此点的坐标.19.如下图,写出其中标有字母的各点的横坐标和纵坐标.20.在直角坐标系内描出各点,并依次用线段连接各点:(4,4),(3,3),(4,3),(2,1),(4,1),(,0),(,0),(4,1),(6,1),(4,3),(5,3),(4,4). 观察得到的图形,你觉得该图形像什么?求出所得到图形的面积.21.如图,在直角坐标系中第一次将OAB变换成OA1B1,第二次又变换成OA2B2,第三次变换成OA3B3,:A(1,3),A1(-2,-3),A2(4,3),A3(-8,-3);B(2,0),B1(-4,0),B2(8,0),B3(-16,0). (1)观察每次变化前后的三角形有何变化,找出其中的规律,按此变化规律变换成OA4B4,那么点A4的坐标为_,点B4的坐标为_. (2)假设按(1)中找到的规律将OAB进行了n次变换,得到OAnBn,推测点An坐标为_,点Bn坐标为_.参考答案1.D 2.D 3.3 4 4.y=0 x=0 x=y=05.观察图,A(2,3),B(3,2),C(-2,1),D(-1,-2),E(2.5,0),F(0,-2),O(0,0).6.C7.图略.8.图略,A(-,-),B(,-),D(-,).9.图略,所得图形为长方形. AB=|3|+|-1|=4,BC=|-3|+|2|=5. S长方形ABCD=ABBC=45=20(平方单位).10.B 11.B 12.C 13.C 14.(3,3)或(6,-6) 15.(8,2)或(-2,2) 16.(0,3)或(0,-3)17.(5,3)或(-5,3)或(5,-3)或(-5,-3)18.(1)汽车行驶到点A与x轴的垂线段的垂足处时,离A村最近,此点的坐标为(2,0);(2)汽车行驶到点B与x轴的垂线段的垂足处时离B村最近,此点的坐标为(7,0).19.A(0,6),B(-4,2),C(-2,2),D(-2,-6),E(2,-6),F(2,2),G(4,2).20.图略:像宝塔松.图形的面积为:11+42+21=+4+1=.21.1(16,3) (32,0) (2)(-2)n,(-1)n3 -(-2)n+1,0欢迎下载
展开阅读全文