资源描述
直线与椭圆的位置关系直线与椭圆的位置关系 学习目标: 1、熟练掌握椭圆的定义域几何性质,掌握直线与椭圆的位置关系及弦长中点弦问题。 2、通过学习,培养学生逻辑推理能力通过学习,培养学生逻辑推理能力 3、通过学生互相交流学习,培养学生探索创新、通过学生互相交流学习,培养学生探索创新、合作交流的学习精神。合作交流的学习精神。 重点难点:直线与椭圆的位置关系重点难点:直线与椭圆的位置关系drd00直线与椭圆相交直线与椭圆相交有两个公共点;有两个公共点; (2)=0 直线与椭圆相切直线与椭圆相切有且只有一个公共点;有且只有一个公共点; (3)0- (1)所以,方程()有两个根,所以,方程()有两个根,则原方程组有两组解。则原方程组有两组解。题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系练习练习1.K为何值时为何值时,直线直线y=kx+2和曲线和曲线2x2+3y2=6有有两个公共点两个公共点?有一个公共点有一个公共点?没有公共点没有公共点?练习练习2.无论无论k为何值为何值,直线直线y=kx+2和曲线和曲线交点情况满足交点情况满足( )A.没有公共点没有公共点 B.一个公共点一个公共点C.两个公共点两个公共点 D.有公共点有公共点22194xy D题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系6k366kk-3366-k33当 =时有一个交点当或时有两个交点当时没有交点lmm题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系2214 -5400.259 xylxyl例3:已知椭圆,直线 :椭圆上是否存在一点,它到直线 的距离最小?最小距离是多少? oxyml解:设直线 平行于 ,224501259xykxy由方程组22258-2250yxkxk消去 ,得题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系22064-4 25-2250kk 由,得()450lxyk则 可写成:12k25k25解得=,=-25.k 由图可知 oxy45250mxy直线 为:22402515414145mld直线 与椭圆的交点到直线 的距离最近。且思考:最大的距离是多少?题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系2214 -5400.259 xylxyl例3:已知椭圆,直线 :椭圆上是否存在一点,它到直线 的距离最小?最小距离是多少?max22402565414145d设直线与椭圆交于设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线两点,直线P1P2的斜率为的斜率为k弦长公式:弦长公式:221|1|1|ABABABkxxyyk知识点知识点2:弦长公式:弦长公式可推广到任意二次曲线例例1:已知斜率为:已知斜率为1的直线的直线L过椭圆过椭圆 的右焦点,的右焦点,交椭圆于交椭圆于A,B两点,求弦两点,求弦AB之长之长题型二:弦长公式题型二:弦长公式222:4,1,3.abc解 由椭圆方程知( 3,0).F右焦点:3.lyx直线 方程为22314yxxy258 380yxx消 得:1122( ,), (,)A x yB xy设12128 38,55xxxx22212121211()4ABkxxkxxxx85例例 2 2: :已知点已知点12FF、分别是椭圆分别是椭圆22121xy的左、右的左、右 题型二:弦长公式题型二:弦长公式例例 2 2: :已知点已知点12FF、分别是椭圆分别是椭圆22121xy的左、右的左、右 例例3 :已知椭圆:已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.解:解:韦达定理韦达定理斜率斜率韦达定理法:利用韦达定理及中点坐标公式来构造韦达定理法:利用韦达定理及中点坐标公式来构造题型三:中点弦问题题型三:中点弦问题例例 3 已知椭圆已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.点差法:利用端点在曲线上,坐标满足方程,作差构造点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率出中点坐标和斜率点点作差作差题型三:中点弦问题题型三:中点弦问题知识点知识点3:中点弦问题:中点弦问题点差法:点差法:利用端点在曲线上,坐标满足方程,作利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率差构造出中点坐标和斜率112200( ,), (,),(,)A x yB xyABM xy设中点,0120122,2xxxyyy则有:1212AByykxx又2211221xyab2222221xyab两式相减得:2222221211()()0bxxayy1122( ,), (,)A x yB xy在椭圆上,2222221211()()0bxxayy由2221122212yybxxa 即2111221211AByyxxbkxxayy 2020 xbay 直线和椭圆相交有关弦的中点问题,常用设而不求的思想方法 例例3已知椭圆已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.所以所以 x2+4y2=(4-x)2+4(2-y)2,整理得,整理得x+2y-4=0从而从而A ,B在直线在直线x+2y-4=0上上而过而过A,B两点的直线有且只有一条两点的直线有且只有一条解后反思:中点弦问题求解关键在于充分利用解后反思:中点弦问题求解关键在于充分利用“中点中点”这这一一 条件,灵活运用中点坐标公式及韦达定理,条件,灵活运用中点坐标公式及韦达定理,题型三:中点弦问题题型三:中点弦问题例例4、如图,已知椭圆、如图,已知椭圆 与直线与直线x+y-1=0交交于于A、B两点,两点, AB的中点的中点M与椭圆中心连线的与椭圆中心连线的斜率是斜率是 ,试求,试求a、b的值。的值。221axby2 2,AB 22oxyABM22110axbyxy 解:2)210yab xbxb 消 得:(2)(1)0bab b=4-4(abab1122( ,), (,)A x yB x y设121221,bbxxx xabab(,)baABMab ab中点22121 21()4ABkxxx x又MOakb222ba 2212 22 ()4bbabab12,33ab 练习练习:1、如果椭圆被、如果椭圆被 的弦被(的弦被(4,2)平分,那)平分,那 么这弦所在直线方程为(么这弦所在直线方程为( )A、x-2y=0 B、x+2y- 4=0 C、2x+3y-12=0 D、x+2y-8=02、y=kx+1与椭圆与椭圆 恰有公共点,则恰有公共点,则m的范围的范围( ) A、(、(0,1) B、(、(0,5 ) C、 1,5)(5,+ ) D、(、(1,+ ) 3、过椭圆、过椭圆 x2+2y2=4 的左焦点作倾斜角为的左焦点作倾斜角为300的直线,的直线, 则弦长则弦长 |AB|= _ , DC193622yx1522myx165练习:练习: 4.已知椭圆已知椭圆5x2+9y2=45,椭圆的右焦点为,椭圆的右焦点为F,(1)求过点求过点F且斜率为且斜率为1的直线被椭圆截得的弦长的直线被椭圆截得的弦长.(2)判断点判断点A(1,1)与椭圆的位置关系与椭圆的位置关系,并求以并求以A为中点为中点椭圆的弦所在的直线方程椭圆的弦所在的直线方程.22:(1)195xy解椭圆(2,0)F2lyx直线 :2225945yxxy由2143690 xx得:1212189,714xxxx2212126 111()47kxxxx弦长练习:练习: 已知椭圆已知椭圆5x2+9y2=45,椭圆的右焦点为,椭圆的右焦点为F,(1)求过点求过点F且斜率为且斜率为1的直线被椭圆截得的弦长的直线被椭圆截得的弦长.(2)判断点判断点A(1,1)与椭圆的位置关系与椭圆的位置关系,并求以并求以A为中点为中点椭圆的弦所在的直线方程椭圆的弦所在的直线方程.22:(2)5 19 145 解(1,1)A在椭圆内。1122( ,),(,)AMNM x yN x y设以 为中点的弦为且12122,2xxyy22115945xy22225945xy22221212590 xxyy两式相减得: () ()1212121259MNyyxxkxxyy 59 51(1)9AMNyx 以 为中点的弦为方程为:59140 xy3、弦中点问题弦中点问题的两种处理方法:的两种处理方法: (1)联立方程组,消去一个未知数,利用韦达定理;)联立方程组,消去一个未知数,利用韦达定理; (2)设两端点坐标,代入曲线方程相减可求出弦的斜率。)设两端点坐标,代入曲线方程相减可求出弦的斜率。 1、直线与椭圆的三种位置关系及判断方法;、直线与椭圆的三种位置关系及判断方法;2、弦长的计算方法:、弦长的计算方法:弦长公式:弦长公式: |AB|= = (适用于任何曲线)(适用于任何曲线) 21212411yyyyk )(21221241xxxxk )(小小 结结解方程组消去其中一元得一元二次型方程解方程组消去其中一元得一元二次型方程 0 相交相交 作业: 新学案P140 例3例4
展开阅读全文