大学物理简明教程习题解答第7章.9

上传人:沈*** 文档编号:45269660 上传时间:2021-12-06 格式:DOC 页数:21 大小:1.10MB
返回 下载 相关 举报
大学物理简明教程习题解答第7章.9_第1页
第1页 / 共21页
大学物理简明教程习题解答第7章.9_第2页
第2页 / 共21页
大学物理简明教程习题解答第7章.9_第3页
第3页 / 共21页
点击查看更多>>
资源描述
第7章 恒定磁场7-1在闪电中电流可高达2104A,若将闪电电流视作长直电流,问距闪电电流1.0m处的磁感应强度有多大?解 根据安培环路定理 ,与长直电流相距r处的磁感应强度为 解得相距1.0m处的磁感应强度的大小 题7-2图7-2 如图所示,两根无限长直导线互相垂直地放置,相距d=2.010-2m。设两根导线通过的电流均为I=10A,求两导线垂直距离中点P处的磁感应强度。解 两根载有相同电流的无限长直导线在P处的磁感应强度的大小相同,由安培环路定理 得 和的方向分别指向x轴的负方向和z轴的正方向。由磁场叠加原理,P处磁感应强度的大小为 BP的方向在x-z平面内,与z轴正方向和x轴负方向均成45夹角。题7-3图7-3 如图所示,一无限长载流绝缘直导线弯成如附图所示的形状。求使o点的磁感应强度为零的半径a和b的比值。解 该载流系统由三部分组成,o点的磁感应强度为载有相同电流的无限长直导线及两个半径分别为a和b的圆环分别在该处激发的磁感应强度的矢量和。设磁场方向以垂直纸面向内为正,向外为负。由安培环路定理 无限长载流直导线在o点的磁感应强度为 ,根据毕奥萨伐尔定律,电流元Idl在o点的磁感应强度,其中,对两载流圆环分别积分,有 由磁场叠加原理 解得 题7-4图7-4 如图所示,两导线沿半径方向引到铁环上a、b两点,并与远处的电源相连,已知环的粗细均匀,求环中心o的磁感应强度。解 设aeb长为l1,ab长为l2。并设磁场方向以垂直纸面向内为正,向外为负,因为,即,所以。根据毕奥萨伐尔定律,电流元Idl在圆心o点的磁感应强度,式中。对两载流圆弧分别积分,有 由磁场叠加原理,o点的磁感应强度的大小为题7-5图7-5 一根无限长直导线通有电流I=4A,中部被弯成半圆弧形,半径r=10cm。求圆弧中心的磁感应强度。解 无限长直导线的直线部分在O点产生的磁感应强度为0,所以 O点的磁场仅由载流半圆弧激发。根据毕奥萨伐尔定律,电流元Idl在O点的磁感应强度,式中,故有 方向垂直纸面向内。题7-6图7-6 将一段导线弯成半径分别为R1和R2的同心1/4圆弧,并与两段径向直线段组成一闭合回路。回路中通有电流I,方向如图所示。求圆心o处的磁感应强度B的大小和方向。解 两段径向直线段在o点不产生磁场,所以只需将大、小两个圆弧在o点产生的磁感应强度进行叠加。根据毕奥萨伐尔定律,电流元Idl在 o点的磁感应强度 式中对两圆弧分别积分,有 ,方向垂直纸面向外。 ,方向垂直纸面向里。两同心1/4圆弧在o点产生的总磁感应强度,方向垂直纸面向外。题7-7图7-7 如图所示,一根长为L的导线,载有电流I。试求:(1)该导线在其中垂线上与导线相距为L/2的P点处所产生的磁场的磁感应强度;(2)在P点正上方相距L/2处的Q点的磁感应强度。解 利用长直载流导线的磁场公式求解。(1)对于P点,P点的磁感应强度 方向垂直纸面向里。(2)对于Q点, ,Q点的磁感应强度 方向垂直纸面向里。题7-8图7-8 一均匀磁场的磁感应强度B=2.0T,方向沿x轴正向,如图所示。试求:(1)通过图中abcd面的磁通量;(2)通过图中befc面的磁通量;(3)通过图中aefd面的磁通量。解 (1)根据磁通量定义 对于abcd面,则通过该面的磁通量 (2)对于befc面,,则通过该面的磁通量(3)对于aefd面,则7-9 一个非均匀磁场磁感应强度的变化规律为B=ky(k为常量),方向垂直纸面向外。磁场中有一边长为a的正方形线框,其位置如图所示。求通过线框的磁通量。解 在线框内坐标为y处取一长为a宽为dy的矩形面积元dS,在dS中磁场可认为是均匀的,则通过dS的磁通量 对正方形线框平面积分,得 题7-10图7-10 两根平行的长直导线相隔0.75cm,且都垂直于图示的平面。导线1载有6.5A流入页面的电流。要使图中P点的合成磁场为零,试确定导线2中电流的大小和方向。解 根据安培环路定理, 对长直导线1,有 ,对长直导线2,有 ,两长直导线在P点产生的磁感应强度的大小相等,即,于是有,由此解得 , 为使P点的合成磁场为零,则导线1和导线2中电流的流向必需相反,故长直导线2中电流方向垂直纸面向外。题7-11图7-11 同轴长电缆由内、外两导体构成,内导体是半径为a的实心圆柱,外导体是内外半径分别为b和c的圆筒。在两导体中,大小相等、方向相反的电流I通过。试求磁感应强度B的分布:(1)圆柱导体内离轴r处(ra);(2)两导体间(arb);(3)圆筒形导体内(brc)。解 (1)ra应用安培环路定理,在ra柱体内绕轴作环形回路L,其中,于是有 ,得(2)arb 应用安培环路定理,在arb柱体间绕轴作环形回路L,其中, 于是有 ,得(3)brc应用安培环路定理,在brc应用安培环路定理,在r c空间作环形闭合回路L,包围的电流 于是有 ,得题7-12图(1)7-12 图中所示为一无限大载流导电薄片的横截面,电流垂直地从页面流出,通过横截面每单位宽度(沿x向)的电流强度为j。(1)用毕奥萨伐尔定律和对称性确定薄片上、下方所有点的磁场方向均平行于薄片,且在页面内(见图);(2)用安培环路定理证明,在所有点P和P处的磁感应强度。题7-12图(2)解 (1)该无限大载流导电薄片可看作是由无数条无限长载流直导线组成。P点为薄片上方任意一点,根据毕奥萨伐尔定律可知每条直导线在P点产生的磁场均在页面内。又根据对称性,P点左侧-x0处直导线与右侧x0处直导线产生的磁场的磁感应强度在y轴上分量大小相等方向相反,而在x轴上分量大小相等方向相同(如右图),因此合成后P点处总的磁场方向应该平行于薄片向左,且在页面内。同理亦可推知薄片下方任意一点P处总的磁场方向应该平行于薄片向右,且在页面内。题7-12图(3)(2)作对称于载流导电薄片的矩形环路,如右图,ab长为l1,bc长为l2,则环路中包围的电流为。由安培环路定理,即 在ab段和cd段上B的方向均与dl相同,而在bc段和da段上B的方向与dl垂直,故有解得 题7-13图(1)7-13 两无限大平行导体平面上都有均匀分布的电流,其面电流密度分别为j1和j2,且j1 j2(见附图),试求两平面间和两平面外的磁感应强度。解 利用上题结论,将两载流平面产生的磁场进行叠加计算。题7-13图(2)两平面间P点,磁场B1与B2方向相反,如图(2): 两平面外Q点,磁场B1与B2方向相同,如图(2): 7-14 一长直导线中通有电流I1,近旁有一矩形线圈,其长边与导线平行。若线圈中通有电题7-14图流I2,线圈的位置及尺寸如图所示。当I1=20A、I2=10A、x1=1.0cm、x2=10cm、l=20cm时,求矩形线圈所受力的大小和方向。解 根据安培定律判断,矩形线圈上、下两载流导线受力大小相等而方向相反,相互抵消。左、右两侧载流导线受力方向相反,但大小不等。由安培环路定理可知,长直载流导线在线圈左、右两侧处产生的磁感应强度分别为和,由此线圈左、右两侧载流导线受力大小分别为 线圈所受合力 负号表示合力方向水平向左。题7-15图7-15 如图所示,ADC为弯成任意形状的导线,被置于与均匀磁场B垂直的平面内。求证:当弯曲导线ADC通以电流I时,均匀磁场对它的作用力与AC间通有同样电流的直导线所受的力相同。证明 在弯曲导线ADC上选取图示的坐标系xoy,在导线上取电流元Idl。电流元在磁场中受到磁场力 = 因此弯曲导线ADC受合力 根据安培定律,长l的载流直导线AC在匀强磁场中受力FAC=IBl,方向沿y轴负向。显然,它与弯曲导线ADC所受磁场力的大小和方向均相同,即FADC=Fac。从而证明了匀强磁场中任意形状一段载流导线ADC所受磁场力,与AC间通有同样电流的直导线所受的力相同。题7-16图7-16 一长直导线通有电流I =20A,另一导线ab通有电流I=10A,两者互相垂直且共面,如图所示。求导线ab所受的作用力和对o点的力矩。解 建立如图所示的坐标,导线ab于 x轴上。由安培环路定律解得,载流长直导线周围的磁感应强度为。在ab上取一电流元,受力大小为 导线ab所受的总作用力 方向沿y轴。电流元对O点的力矩 导线ab所受的总力矩 题7-17图7-17 在磁感应强度为B的均匀磁场中,有一载流矩形闭合回路,其边长分别为a和b,电流强度为I。试求在图示位置时该回路的磁矩pm和磁力矩M。解 根据定义,磁矩大小为 方向垂直纸面向里。磁力矩,其大小为 方向沿oo竖直向下。题7-18图7-18 一半径为R的圆形导线中通有电流I2,在沿直径ab方向上有一载有电流I1的无限长直导线(彼此绝缘),方向见图。求:(1)半圆弧acb所受作用力的大小和方向;(2)整个圆形导线所受作用力的大小和方向。解 (1)建立如图所示的坐标系。在半圆弧acb上任取一电流元。电流元所在处的磁场垂直纸面向外,磁感应强度。电流元受到磁场作用力的大小为,方向指向圆心。该力在x方向的分量 , 则半圆弧acb在x方向所受的合力 磁场力在y方向的分量 则半圆弧acb在y方向受到的合力 =Fy也可由对称性分析得到同样的结果。所以半圆弧acb受力沿x轴正向,大小为。(2)用类似方法可分析另一侧半圆弧,它与acb受力大小和方向均相同,故整个圆形导线所受作用力大小为,方向沿x轴正向。题7-19图7-19 如图所示,一闭合回路由半径为a和b的两个同心半圆连成,载有电流I。试求(1)圆心P点处磁感应强度B的大小和方向;(2)回路的磁矩。解 (1)o点磁场仅由两载流半圆弧激发。根据毕奥萨伐尔定律,电流元Idl在o点产生的磁感应强度,且。半径为a的圆弧在o的磁感应强度为 半径为b的圆弧在o的磁感应强度为 由磁场叠加原理,P点处总磁感应强度 方向垂直纸面向里。(2)根据磁矩定义 方向垂直纸面向里。题7-20图7-20 质谱仪的构造原理如图所示。离子源S提供质量为M、电荷为q的离子。离子初速很小,可以看作是静止的,然后经过电压U的加速,进入磁感应强度为B的均匀磁场,沿着半圆周运动,最后到达记录底片P上。测得离子在P上的位置到入口处A的距离为x。试证明该离子的质量为:。证明 设离子经电压U加速后进入磁场时的速度为v。电场力作功使离子获得动能 在磁场中洛伦兹力提供作圆周运动的向心力 由此解得该离子的质量为,于是得证。题7-21图7-21 如图所示,把一宽2.0102m、厚1.0103m的铜片放在磁感应强度B=1.5T的均匀磁场中,如果铜片中通有200A的电流。试问(1)铜片左右两侧的电势哪侧高?(2)霍耳电势差有多大?(铜的电子浓度n=8.41028 l/m3)。解 (1)根据洛伦兹力可判断铜片内载流子(电子)在磁场中的受力方向向右,因此右侧积聚了电子带负电,左侧因缺少电子而带等量的正电。所以左侧电势高。(2)霍耳电势差 题7-22图7-22 图示为半导体样品,沿x轴方向有电流I,z轴方向有均匀磁场B。实验测得的数据为:a=0.10cm,b=0.35cm,c=1.0cm,I=1.0mA,B=0.3T,半导体片两侧的电势差U1-U2=6.55mV。(1)试问这种样品是p型还是n型半导体?(2)求载流子浓度。解 (1)根据洛伦兹力可判断半导体样品内载流子在磁场中的受力方向向左。因U1U2,可知左侧带负电,因此载流子为电子,半导体为n型。(2)载流子(电子)浓度 7-23 一长直螺线管,每米绕有1000匝,今要求在螺线管内部轴上一点p的磁感应强度B = 4.2104T,问螺线管中需通以多大的电流?(设螺线管内为空气)。若螺线管是绕在铁芯上,通以上述同样大小的电流,问这时在螺线管内部同一点产生的磁感应强度为多少?设此时纯铁的相对磁导率mr=5000。解 根据安培环路定律,当管内为空气时 螺线管中需通的电流为 当螺线管内有铁芯时,管内的磁感应强度 永磁交流伺服电机位置反馈传感器检测相位与电机磁极相位的对齐方式2008-11-07来源:internet浏览:504 主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等。为支持永磁交流伺服驱动的矢量控制,这些位置反馈元件就必须能够为伺服驱动器提供永磁交流伺服电机的永磁体磁极相位,或曰电机电角度信息,为此当位置反馈元件与电机完成定位安装时,就有必要调整好位置反馈元件的角度检测相位与电机电角度相位之间的相互关系,这种调整可以称作电角度相位初始化,也可以称作编码器零位调整或对齐。下面列出了采用增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等位置反馈元件的永磁交流伺服电机的传感器检测相位与电机电角度相位的对齐方式。增量式编码器的相位对齐方式 在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察编码器的U相信号和Z信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的U相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。 上述验证方法,也可以用作对齐方法。 需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。 有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作为本讨论的话题。 绝对式编码器的相位对齐方式 绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察绝对编码器的最高计数位电平信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察最高计数位信号的跳变沿,直到跳变沿准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,跳变沿都能准确复现,则对齐有效。 这类绝对式编码器目前已经被采用EnDAT,BiSS,Hyperface等串行协议,以及日系专用串行协议的新型绝对式编码器广泛取代,因而最高位信号就不符存在了,此时对齐编码器和电机相位的方法也有所变化,其中一种非常实用的方法是利用编码器内部的EEPROM,存储编码器随机安装在电机轴上后实测的相位,具体方法如下: 1.将编码器随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳; 2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 3.用伺服驱动器读取绝对编码器的单圈位置值,并存入编码器内部记录电机电角度初始相位的EEPROM中; 4.对齐过程结束。 由于此时电机轴已定向于电角度相位的-30度方向,因此存入的编码器内部EEPROM中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻的单圈位置检测数据与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。这种对齐方式需要编码器和伺服驱动器的支持和配合方能实现,日系伺服的编码器相位之所以不便于最终用户直接调整的根本原因就在于不肯向用户提供这种对齐方式的功能界面和操作方法。这种对齐方法的一大好处是,只需向电机绕组提供确定相序和方向的转子定向电流,无需调整编码器和电机轴之间的角度关系,因而编码器可以以任意初始角度直接安装在电机上,且无需精细,甚至简单的调整过程,操作简单,工艺性好。 如果绝对式编码器既没有可供使用的EEPROM,又没有可供检测的最高计数位引脚,则对齐方法会相对复杂。如果驱动器支持单圈绝对位置信息的读出和显示,则可以考虑: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.利用伺服驱动器读取并显示绝对编码器的单圈位置值; 3.调整编码器转轴与电机轴的相对位置; 4.经过上述调整,使显示的单圈绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的单圈绝对位置点,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算位置点都能准确复现,则对齐有效。 如果用户连绝对值信息都无法获得,那么就只能借助原厂的专用工装,一边检测绝对位置检测值,一边检测电机电角度相位,利用工装,调整编码器和电机的相对角位置关系,将编码器相位与电机电角度相位相互对齐,然后再锁定。这样一来,用户就更加无从自行解决编码器的相位对齐问题了。 个人推荐采用在EEPROM中存储初始安装位置的方法,简单,实用,适应性好,便于向用户开放,以便用户自行安装编码器,并完成电机电角度的相位整定。 正余弦编码器的相位对齐方式 普通的正余弦编码器具备一对正交的sin,cos 1Vp-p信号,相当于方波信号的增量式编码器的AB正交信号,每圈会重复许许多多个信号周期,比如2048等;以及一个窄幅的对称三角波Index信号,相当于增量式编码器的Z信号,一圈一般出现一个;这种正余弦编码器实质上也是一种增量式编码器。另一种正余弦编码器除了具备上述正交的sin、cos信号外,还具备一对一圈只出现一个信号周期的相互正交的1Vp-p的正弦型C、D信号,如果以C信号为sin,则D信号为cos,通过sin、cos信号的高倍率细分技术,不仅可以使正余弦编码器获得比原始信号周期更为细密的名义检测分辨率,比如2048线的正余弦编码器经2048细分后,就可以达到每转400多万线的名义检测分辨率,当前很多欧美伺服厂家都提供这类高分辨率的伺服系统,而国内厂家尚不多见;此外带C、D信号的正余弦编码器的C、D信号经过细分后,还可以提供较高的每转绝对位置信息,比如每转2048个绝对位置,因此带C、D信号的正余弦编码器可以视作一种模拟式的单圈绝对编码器。 采用这种编码器的伺服电机的初始电角度相位对齐方式如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察正余弦编码器的C信号波形; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察C信号波形,直到由低到高的过零点准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,过零点都能准确复现,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的C相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。 这种验证方法,也可以用作对齐方法。 此时C信号的过零点与电机电角度相位的-30度点对齐。如果想直接和电机电角度的0度点对齐,可以考虑: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器的C相信号由低到高的过零点和电机U相反电势波形由低到高的过零点,最终使2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通正余弦编码器不具备一圈之内的相位信息,而Index信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而在此也不作为讨论的话题。 如果可接入正余弦编码器的伺服驱动器能够为用户提供从C、D中获取的单圈绝对位置信息,则可以考虑: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.利用伺服驱动器读取并显示从C、D信号中获取的单圈绝对位置信息; 3.调整旋变轴与电机轴的相对位置; 4.经过上述调整,使显示的绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的绝对位置点,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算绝对位置点都能准确复现,则对齐有效。 此后可以在撤掉直流电源后,得到与前面基本相同的对齐验证效果: 1.用示波器观察正余弦编码器的C相信号和电机的UV线反电势波形; 2.转动电机轴,验证编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。 如果利用驱动器内部的EEPROM等非易失性存储器,也可以存储正余弦编码器随机安装在电机轴上后实测的相位,具体方法如下: 1.将正余弦随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳; 2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 3.用伺服驱动器读取由C、D信号解析出来的单圈绝对位置值,并存入驱动器内部记录电机电角度初始安装相位的EEPROM等非易失性存储器中; 4.对齐过程结束。 由于此时电机轴已定向于电角度相位的-30度方向,因此存入的驱动器内部EEPROM等非易失性存储器中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻由编码器解析出来的与电角度相关的单圈绝对位置值与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。 这种对齐方式需要伺服驱动器的在国内和操作上予以支持和配合方能实现,而且由于记录电机电角度初始相位的EEPROM等非易失性存储器位于伺服驱动器中,因此一旦对齐后,电机就和驱动器事实上绑定了,如果需要更换电机、正余弦编码器、或者驱动器,都需要重新进行初始安装相位的对齐操作,并重新绑定电机和驱动器的配套关系。 旋转变压器的相位对齐方式 旋转变压器简称旋变,是由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电技术的编码器而言,具有耐热,耐振。耐冲击,耐油污,甚至耐腐蚀等恶劣工作环境的适应能力,因而为武器系统等工况恶劣的应用广泛采用,一对极(单速)的旋变可以视作一种单圈绝对式反馈系统,应用也最为广泛,因而在此仅以单速旋变为讨论对象,多速旋变与伺服电机配套,个人认为其极对数最好采用电机极对数的约数,一便于电机度的对应和极对数分解。 旋变的信号引线一般为6根,分为3组,分别对应一个激励线圈,和2个正交的感应线圈,激励线圈接受输入的正弦型激励信号,感应线圈依据旋变转定子的相互角位置关系,感应出来具有SIN和COS包络的检测信号。旋变SIN和COS输出信号是根据转定子之间的角度对激励正弦信号的调制结果,如果激励信号是sint,转定子之间的角度为,则SIN信号为sintsin,则COS信号为sintcos,根据SIN,COS信号和原始的激励信号,通过必要的检测电路,就可以获得较高分辨率的位置检测结果,目前商用旋变系统的检测分辨率可以达到每圈2的12次方,即4096,而科学研究和航空航天系统甚至可以达到2的20次方以上,不过体积和成本也都非常可观。 商用旋变与伺服电机电角度相位的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出; 2.然后用示波器观察旋变的SIN线圈的信号引线输出; 3.依据操作的方便程度,调整电机轴上的旋变转子与电机轴的相对位置,或者旋变定子与电机外壳的相对位置; 4.一边调整,一边观察旋变SIN信号的包络,一直调整到信号包络的幅值完全归零,锁定旋变; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,信号包络的幅值过零点都能准确复现,则对齐有效 。 撤掉直流电源,进行对齐验证: 1.用示波器观察旋变的SIN信号和电机的UV线反电势波形; 2.转动电机轴,验证旋变的SIN信号包络过零点与电机的UV线反电势波形由低到高的过零点重合。 这个验证方法,也可以用作对齐方法。 此时SIN信号包络的过零点与电机电角度相位的-30度点对齐。如果想直接和电机电角度的0度点对齐,可以考虑: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察旋变的SIN信号包络的过零点和电机U相反电势波形由低到高的过零点,最终使这2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 需要指出的是,在上述操作中需有效区分旋变的SIN包络信号中的正半周和负半周。由于SIN信号是以转定子之间的角度为的sin值对激励信号的调制结果,因而与sin的正半周对应的SIN信号包络中,被调制的激励信号与原始激励信号同相,而与sin的负半周对应的SIN信号包络中,被调制的激励信号与原始激励信号反相,据此可以区别和判断旋变输出的SIN包络信号波形中的正半周和负半周。对齐时,需要取sin由负半周向正半周过渡点对应的SIN包络信号的过零点,如果取反了,或者未加准确判断的话,对齐后的电角度有可能错位180度,从而造成速度外环进入正反馈。如果可接入旋变的伺服驱动器能够为用户提供从旋变信号中获取的与电机电角度相关的绝对位置信息,则可以考虑: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.利用伺服驱动器读取并显示从旋变信号中获取的与电机电角度相关的绝对位置信息; 3.依据操作的方便程度,调整旋变轴与电机轴的相对位置,或者旋变外壳与电机外壳的相对位置; 4.经过上述调整,使显示的绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的绝对位置点,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算绝对位置点都能准确复现,则对齐有效。 此后可以在撤掉直流电源后,得到与前面基本相同的对齐验证效果: 1.用示波器观察旋变的SIN信号和电机的UV线反电势波形; 2.转动电机轴,验证旋变的SIN信号包络过零点与电机的UV线反电势波形由低到高的过零点重合。 如果利用驱动器内部的EEPROM等非易失性存储器,也可以存储旋变随机安装在电机轴上后实测的相位,具体方法如下: 1.将旋变随机安装在电机上,即固结旋变转轴与电机轴,以及旋变外壳与电机外壳; 2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 3.用伺服驱动器读取由旋变解析出来的与电角度相关的绝对位置值,并存入驱动器内部记录电机电角度初始安装相位的EEPROM等非易失性存储器中; 4.对齐过程结束。 由于此时电机轴已定向于电角度相位的-30度方向,因此存入的驱动器内部EEPROM等非易失性存储器中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻由旋变解析出来的与电角度相关的绝对位置值与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。 这种对齐方式需要伺服驱动器的在国内和操作上予以支持和配合方能实现,而且由于记录电机电角度初始相位的EEPROM等非易失性存储器位于伺服驱动器中,因此一旦对齐后,电机就和驱动器事实上绑定了,如果需要更换电机、旋变、或者驱动器,都需要重新进行初始安装相位的对齐操作,并重新绑定电机和驱动器的配套关系。 注意 1.以上讨论中,所谓对齐到电机电角度的-30度相位的提法,是以UV反电势波形滞后于U相30度的前提为条件。 2.以上讨论中,都以UV相通电,并参考UV线反电势波形为例,有些伺服系统的对齐方式可能会采用UW相通电并参考UW线反电势波形。 3.如果想直接对齐到电机电角度0度相位点,也可以将U相接入低压直流源的正极,将V相和W相并联后接入直流源的负端,此时电机轴的定向角相对于UV相串联通电的方式会偏移30度,以文中给出的相应对齐方法对齐后,原则上将对齐于电机电角度的0度相位,而不再有-30度的偏移量。这样做看似有好处,但是考虑电机绕组的参数不一致性,V相和W相并联后,分别流经V相和W相绕组的电流很可能并不一致,从而会影响电机轴定向角度的准确性。而在UV相通电时,U相和V相绕组为单纯的串联关系,因此流经U相和V相绕组的电流必然是一致的,电机轴定向角度的准确性不会受到绕组定向电流的影响。 4.不排除伺服厂商有意将初始相位错位对齐的可能性,尤其是在可以提供绝对位置数据的反馈系统中,初始相位的错位对齐将很容易被数据的偏置量补偿回来,以此种方式也许可以起到某种保护自己产品线的作用。只是这样一来,用户就更加无从知道伺服电机反馈元件的初始相位到底该对齐到哪儿了。用户自然也不愿意遇到这样的供应商。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!