汽车倒车防撞系统毕业论文1

上传人:1666****666 文档编号:40035183 上传时间:2021-11-13 格式:DOC 页数:36 大小:710KB
返回 下载 相关 举报
汽车倒车防撞系统毕业论文1_第1页
第1页 / 共36页
汽车倒车防撞系统毕业论文1_第2页
第2页 / 共36页
汽车倒车防撞系统毕业论文1_第3页
第3页 / 共36页
点击查看更多>>
资源描述
河北化工医药职业技术学院毕业论文毕业论文汽车倒车防撞系统摘 要汽车作为现代社会最主要的交通工具,数量越来越多,但是交通事故的发生频率逐年增长,其中因倒车发生的事故占很大的比例。随着科技的发展,这类的问题得到了解决,人类发明了智能交通系统,其中汽车智能倒车防撞技术关键在于智能实时的测出汽车与障碍物的距离。当汽车与障碍物之间的距离小于设定的安全距离时,防撞系统就自动报警并采取制动措施。为提高汽车运行的安全性和降低碰撞发生的可能,本文讲述一种主动型汽车倒车防撞报警系统。利用超声波进行无接触的测距,系统主要包括超声波发射电路,超声波接收电路,温度测量电路,数码显示电路以及报警电路。以超声波传感器为重点进行超声波的发射和接收,通过计算得出距离并通过LED显示,在超出一定距离时,电铃报警,驾驶员做出判断。针对系统的功能,对控制软件进行设计。根据验证。满足倒车安全的要求。关键词:超声波,倒车,防撞,测距目 录第一章 汽车防撞系统的研究前提21.1汽车防撞系统的背景及现状21.1.1汽车防撞系统的背景21.1.2研究的目的和意义31.1.3防撞系统的现状4第二章超声波测距52.1关于超声波52.1.1 超声波的介绍52.1.2 超声波的特点52.1.3超声波的应用62.2 超声波传感器62.3超声波测距原理及提高性能的措施72.3.1超声波测距原理72.3.2 提高超声波测距系统性能的若干措施8第三章 系统的组成93.1硬件部分93.2单片机的选择103.3温度传感器的选择113.4 超声波传感器的选择133.5 系统总体设计思路14第四章硬件电路设计154.1 超声波发射电路154.2 超声波接收电路164.3 显示电路与报警电路的设计174.3.1显示电路的设计174.3.2报警电路的设计174.4 电源设计18第五章系统程序设定195.1 程序完成的功能195.2 主程序195.3 温度测量与测距子程序225.4 距离显示,判断以及报警子程序24第六章 误差分析与整改方案266.1超声波测距误差分析266.2针对误差产生原因的系统改进方案28结束语30致谢31参考文献33第一章 汽车防撞系统的研究前提1.1汽车防撞系统的背景及现状1.1.1汽车防撞系统的背景国际上先进国家自80年代末开始研究汽车防撞系统。90年代初,美国、德国、日本相继报道在民用汽车上装备防撞预警系统。我国在这一领域起步较晚,目前由于存在报警系统本身的可靠性或误报警等问题,尚未见到有批量化生产和装备汽车的报道。防撞有微波、激光和超声等多种方法。微波系统测距范围较远,由于采用相控阵天线成像技术,已达到了实用化的程度,只是目前成本居高不下。国内已有公司设计出激光汽车防撞系统样品,但由于激光波束较窄、路障报告率偏低而暂时不能推广。声波的发射和接收是自然界中的普遍现象。频率低于20KHz的声波人耳可辨,进行着各式各样、错综复杂的自然声音传递,因背景复杂而不利做测试媒体使用。频率高于20Hz的超声波不仅波长短、方向性好、能够呈射线定向传播,而且碰到界面就会有显著反射。这些特性有利于选用超声波做媒体,测定物体的位置、距离甚至形状等。超声波传感器的特性:1.在自身特性谐振点40KHz附近可获得较高的灵敏度;2.谐振带宽、波束角可以通过制作工艺控制得很窄,有利于抗声波干扰设计;3.不受无线电频谱资源限制,易于抗电磁干扰设计。另外,超声系统成本低、性能稳定可靠,应用前景好。1.1.2研究的目的和意义随着社会经济的发展交通运输业日益兴旺,汽车的数量在大副攀升。交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失。我国交通死亡率远远高于其他国家。我国目前的交通安全相当于发达国家上个世纪70年代水平。我国的年死亡人数分别是美国的2.3倍、日本的13.4倍、德国的18.4倍。针对这种情况,设计一种响应快,可靠性高且较为经济的汽车防撞预警系统势在必行。汽车已经是一种非常成熟的工业制成品。尤其在机械方面几乎没有太多的潜力可挖,目前主要在电控方面丰富和加强,随着集成电路和单片机在汽车上的广泛应用,汽车上的电子控制单元越来越多,例如电子燃油喷射装置、防抱死制动装置(ABS)、安全气囊装置、电控门窗装置和主动悬架等等。在这种情况下,如果仍采用常规的布线方式,即电线一端与开关相接,另一端与用电设备相通,将导致车上电线数目的急剧增加,使得电线的质量占整车质量的4左右。另外,电控系统的增加虽然提高了轿车的动力性、经济性和舒适性,但随之增加的复杂电路也降低了汽车的可靠性,增加了维修的难度。由于总线系统具有传输速率高,抗干扰能力强,硬件连接方便等突出特点,非常适合用于汽车系统中,解决众多测试与控制仪器之间的数据交换问题。汽车防撞预警系统的核心在于快速、准确地测量出汽车与障碍物之间的距离,并及时发出报警信号,同时通知其它的汽车控制系统(如刹车系统)以达到防止碰撞的目的。实现距离非接触检测的方法很多。目前,非接触式测距系统常采用超声波、激光和雷达。但激光和雷达测距造价偏高,不利于广泛的普及应用,在某些应用领域有其局限性,相比之下,超声波方法具有明显突出的优点:超声波方法作为非接触检测和识别的手段,已越来越引起人们的重视。在机器人避障、导航系统、机械加工自动化装配及检测、自动测距、无损检测、超声定位、汽车倒车、工业测井、水库液位测量等方面已经有了广泛的应用。1.1.3防撞系统的现状1国际上如德国、日本、美国等先进的汽车生产国,在十年前已经开始了主动防撞安全装置的研究与开发。戴姆勒克莱斯勒公司和沃尔沃公司在汽车防撞器方面走在世界前列。美国的大众机械师杂志介绍了戴姆勒克莱斯勒公司汽车防撞器的研究情况。该防撞器结构主要是两个测距仪和一个影像系统,能够测出安全距离,如果发现车前有障碍物,计算机能够自动引发刹车装置。这个系统的特点是:(1) 能够自动测出前方障碍物的速度和距离;(2) 执行机构能够自动启动刹车装置,自动关闭车的侧窗、天窗,自动调整座椅位置。当乘客遭受撞击时,最大限度受到气囊的保护;(3) 能够感知车的行驶状态,如果传感器感到车在左右摇摆,或者感到车内的酒精浓度过高,它能够自动刹车或者自动锁死方向盘。沃尔沃公司在轿车上加装了夜视仪,夜视仪能够显示前灯照射距离以外的物体,显示车的前照灯与车前障碍物的距离,提示司机刹车,但是没有介绍沃尔沃公司的防撞器能不能自动刹车,能不能自动关闭天窗。戴姆勒克莱斯勒公司以及沃尔沃公司的防撞器也有一些缺点:不能防止误操作,如你要超车,车的自动防撞器测出两车的间距小于安全距离,自动防撞器会自动通知汽车控制中心启动自动刹车系统执行减速操作。国内汽车自动防撞技术方面的研究,主要在一些大型汽车企业和科研院所开展,如:长春一汽、上海大众、东风汽车、交通部科学研究所、武汉汽车研究所、清华大学汽车系、北京理工大学机械系等。但是,现在已有的产品的种类并不是很多。从技术先进性角度来讲与国外同类产品仍有一定距离。另外,无论是国内还是国外的汽车自动防撞器车间距离检测的精度和盲区控制以及执行机构的灵活性上仍然有很大的发掘潜力。超声波测距方面目前计算机市场价格大幅度下降,采用非一体化超声波检测仪器,计算机可发挥它一机多用的各种功能,实际上是最大的节约。过去那种全功能的仪器设置,还不如单独的超声仪,计算机可充分发挥各自特点。高智能化检测仪器只有能满足检测条件,使用环境,重复性测试内容等基木情况一样,才可充分发挥其特有功能。仪器设计也应从实际情况出发,才能满足用户的要求。我国超声波仪器的研制与生产,虽然有较大发展,但是在精度、盲区控制、体积重量方面与国外同类产品任然存在一定差距。第二章 超声波测距2.1关于超声波2.1.1 超声波的介绍我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。人类耳朵能听到的声波频率为2020000HZ。当声波的振动频率大于20000HZ或小于20HZ时,我们便听不见了。因此,我们把频率高于20000HZ的声波称为“超声波”。2.1.2 超声波的特点超声波通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其特点是超声频率高,波长短,在一定距离内沿直线传播具有良好的方向性。超声波具有以下的特点:(1) 超声波可在气体、液体、固体、固熔体等介质中有效传播。 (2)超声波可传递很强的能量。 (3) 超声波会产生反射、干涉、叠加和共振现象。 (4)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象2.1.3超声波的应用超声波广泛地应用在多种技术中。超声波有两个特点,一个是能量大,一个是沿直线传播。(1) 工程学方面的应用:水下定位与通讯、地下资源勘查等 。 (2) 生物学方面的应用:剪切大分子、生物工程及处理种子等 。 (3) 诊断学方面的应用:A型、B型、M型、D型、双功及彩超等 。 (4) 治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科等 。2.2 超声波传感器超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面2。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括:工作频率工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。工作温度由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用 超声波传感器功率较小,所以工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。灵敏度主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。 超声波传感器由发送传感器 ( 或称波发送器 ) 、接收传感器 ( 或称波接收器 ) 、控制部,超声波传感器分与电源部分组成。发送器传感器由发送器与使用直径为 15mm 左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中辐射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测。而实际使用中,用发送传感器的陶瓷振子的也可以用做接收器传感器社的陶瓷振子。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。超声波传感器电源 ( 或称信号源 ) 可用 DC12V 10 % 或 24V 10 % 。 2.3超声波测距原理及提高性能的措施2.3.1超声波测距原理在超声波探测电路中, 发射端输出一系列脉冲方波, 其宽度为发射超声波与接收超声波的时间间隔, 被测物距越远, 脉冲宽度越大, 输出脉冲个数与被测距离成正比。超声波测距的方法有多种, 如相位检测法、声波幅值检测法和往返时间检测法等。相位检测法虽然精度高, 但检测范围有限不可运用到汽车倒车中, 其障碍物与汽车的距离;声波幅值检测法易受反射波的影响。本硬件设计采用超声波往返时间检测法3, 其测量原理图如下图2-1所示。图2-1 超声波测距原理图其原理为: 在超声波发射器两端输入40KHZ 脉冲串, 脉冲信号经过超声波内部振子, 振荡产生机械波, 并通过空气介质传播到被测面, 由被测面反射到超声波接收器接收, 在超声波接收器两端, 信号是毫伏级的正弦波信号, 超声波经气体介质的传播到接收器的时间, 即为往返时间。超声测距有脉冲回波法、共振法和频差法,其中常用脉冲回波法测距。超声波测距的原理一般采用渡越时间法 ,其原理是超声传感器发射超声波, 超声波在空气中传播至障碍物, 经反射后由超声传感器接收反射脉冲, 测量出超声脉冲从发射到接收的时间, 再乘以超声波在空气中的速度就得到二倍的声源与障碍物之间的距离, 即: L=ct/2 (2-1)式(2-1)中, L为超声传感器与被测障碍物之间的距离, c为超声波在介质(空气)中的传输速率, t为超声波从发射到接收的时间。超声波在空气中的传播速度为: , 其中T为绝对温度数值, ,。在测量精度不是很高的情况下, 一般可以认为c为常数340m/s。由于温度影响超声波在空气中的传播速度;超声波反射回波又很难精确捕捉,致使超声波在空气中传播的时间很难精确测量。2.3.2 提高超声波测距系统性能的若干措施声速校正要想通过测量超声波传播时间确定距离,声速C必须保持不变,实际上声速受介质、温度、压力等变化的影响。一般情况下,由于大气压力变化很小,因此传播速度主要受到温度的影响。在一定的介质中,通常采用对温度进行修正的方法,可以测得比较准确的距离。通过对温度修正来校正声速的方法,即用测温元件测量实际环境,根据声速与温度的关系计算出测量时实际环境中的声速。空气中声速C与温度T的关系在常温下可由下面近似公式C=(331.4+0.607T)m/s(4) 2、减小盲区措施:(1) 减小发射脉冲宽度发射端采用减幅振荡脉冲或单个脉冲,可使余震(拖尾减少,此法常用于短距离测量距离。采用自动距离增益控制采用具有自动增益控制功能的接收放大器,使近距离的增益很小,远距离时的增益较大,这样一方面发射信号的余震幅度变小,相应的延续时间缩短,可以分辨出近处的接受回波信号,故可使盲区减少。另一方面,可使远汽车防撞预警系统的设计处的回波信号的幅度增大,以提高测量的精度。(3) 信噪比问题超声波测距仪都有确定的量程。量程主要决定于接收信号的幅值应大于规定的阐值。这个闭值决定信噪比。噪声有两类,一类电噪声,在处理上同其它电子仪器一样,另一类为机械噪声,其中工业噪声频率较低,对液介式超声测距仪,工作频率较高,可以避开工业噪声频谱段。而气介式超声回波测距仪,一般频率都较低,易引入工业噪声。这时要求对环境噪声进行频谱分析,尽量避免与噪声频率重叠。第三章 系统的组成3.1硬件部分 硬件电路的设计主要包括单片机系统及显示电路、温度补偿电路,报警电路,超声波发射电路和超声波检测接收电路五部分。单片机采用AT89C51或其兼容系列。采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的4位共阳LED数码管,位码用PNP9012三极管驱动4,系统框架图如图3-1所示。3-1 系统框架图3.2单片机的选择 作为整个系统的核心,单片机选用Atmel公司的AT89C51单片机,AT89C51 是一个低电压、高性能CMOS 8 位微处理器,片内含4 KB 的可反复擦写的Flash 只读程序存储器(ROM)和128 B 的随机存取数据存储器(RAM),与标准MCS-51 指令系统和管脚兼容,片内置通用8 位CPU 和Flash 存储单元,ATMEL的AT89C51 是一种高效微控制器。 主要特性有:与MCS-51 兼容,4K字节可编程FLASH存储器。寿命:1000写/擦循环,数据保留时间:10年,全静态工作:0Hz-24MHz ,三级程序存储器锁定,1288位内部RAM,32可编程I/O线,两个16位定时器/计数器,5个中断源,可编程串行通道,低功耗的闲置和掉电模式,片内振荡器和时钟电路5。AT89C51引脚图6如图3-2所示。AT89C51单片机有如下特点:(1)面向控制的八位CPU(2)一个片内振荡器和时钟产生电路,震荡频率为0-24MHz(3)片内4KBFlash ROM程序寄存器(4)128B的片内数据存储器(5)可寻址64KB的片外程序存储器和片外数据存储器控制电路(6)三级程序存储器锁定 (7)32可编程I/O线 (8)两个16位定时器/计数器 (9)5个中断源,2个中断优先级(10)一个全双工的异步串行口(11)21个特殊功能寄存器(12)具有节电工作方式,即休闲方式和掉电保护方式 图3-2 AT89C51引脚图3.3温度传感器的选择温度传感器是温度测量仪表的核心部分,品种繁多。在本课题中温度传感器可以从热电阻温度传感器或者数字型传感器DS18B20中选择。热电阻传感器是利用导体的电阻随温度变化的特性制成的测温元件。现应用较多的有铂、铜、镍等热电阻。其主要的特点为精度高、测量范围大、便于远距离测量。铂的物理、化学性能极稳定,耐氧化能力强,易提纯,复制性好,工业性好,电阻率较高,因此,铂电阻用于工业检测中高精密测温和温度标准。缺点是价格贵,温度系数小,受到磁场影响大,在还原介质中易被玷污变脆。DS18B20 单线数字温度传感器,即“一线器件”,其具有独特的优点8:(1) 采用单总线的接口方式 与微处理器连接时 仅需要一条口线即可实现微处理器与 DS18B20 的双向通讯。 单总线具有经济性好,抗干扰能力强,适合于恶劣环境的现场温度测量,使用方便等优点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。(2) 测量温度范围宽,测量精度高 DS18B20 的测量范围为 -55 + 125 ; 在 -10+ 85C 范围内,精度为 0.5C 。(3) 在使用中不需要任何外围元件。(4) 持多点组网功能 多个 DS18B20 可以并联在惟一的单线上,实现多点测温。(5) 供电方式灵活 DS18B20 可以通过内部寄生电路从数据线上获取电源。因此,当数据线上的时序满足一定的要求时,可以不接外部电源,从而 使系统结构更趋简单,可靠性更高。(6) 测量参数可配置 DS18B20 的测量分辨率可通过程序设定 912 位。(7) 负压特性 电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。(8) 掉电保护功能 DS18B20 内部含有 EEPROM ,在系统掉电以后,它仍可保存分辨率及报警温度的设定值。 DS18B20 具有体积更小、适用电压更宽、更经济、可选更小的封装方式,更宽的电压适用范围,适合于构建自己的经济的测温系统,因此在本次课题中选用 DS18B20数字温度传感器。DS18B20的管脚排列如图3-3所示:1脚GND为电源 地;2脚DQ为数字信号输入输出端;3脚VDD为外接供电电源输入端。图3-3 DS18B20引脚图如何使用DS18B2O,必须根据DS18B20的通讯协议,主机(单片机)控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位操作,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后释放,当DS18B20收到信号后等待1660微秒左右,后发出60240微秒的存在低脉冲,主CPU收到此信号表示复位成功。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625/LSB形式表达,其中S为符号位。如图3-4是DS18B20温度值格式表。图3-4 DS18B20温度值格式表这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度(例如+125的数字输出为07D0H,+25.0625的数字输出为0191H-25.0625的数字输出为FF6FH,-55的数字输出为FC90H)。3.4 超声波传感器的选择本次课题中选用压电式超声波换能器,压电式超声波换能器是利用压电晶体的谐振来工作的,超声波换能器内部有两个压电晶片和一个换能板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片会发生共振,并带动共振板振动产生超声波,这时它就是一个超声波发生器;反之,如果两电极问未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收换能器。该种有T/R-40-60,T/R-40-12等(其中T表示发送,R表示接收,40表示频率为40KHZ,16及12表示其外径尺寸,以毫米计),超声波发射换能器与接收换能器在结构上稍有不同,使用时应分清器件上的标志。在本课题中选用T/R-40-60超声波收发传感器。 在对超声波回波检测的过程中由于回波信号比较弱,因此需要用到增加高增益放大电路,这里选用CX20106A,集成电路CX20106A是一款红外线检波接收的专用芯片9,其引脚图如3-5所示。图3-5 CX20106A引脚图3.5 系统总体设计思路按照系统设计的功能的要求,初步确定设计系统由单片机主控模块,电源模块,显示模块,超声波发射模块,超声波接收模块,温度补偿模块共六个模块组成10。主控芯片使用51系列ATC89C51单片机,该单片机工作性能稳定,同时也是在单片机课程设计中经常使用到的控制芯片。本设计在接受模块采用了由索尼公司生产的CX2016A红外接收芯片来实现超声波的接收。CX2016A是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用的载波频率38KHz与测距超声波频率40KHz较为接近,可以利用它作为超声波检测电路。实验证明其具有很高的灵敏度和较强的抗干扰能力。同时通过改变部分参数来改变接受电路的灵敏度和抗干扰能力,所以我们采用该芯片作为接收模块主要组成部分。发射电路主要采用差分放大电路来实现的,由反相器74LS04和超声波发射换能器T构成,输出的40kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极,用这种推挽形式将方波信号加到超声波换能器的两端11。之所以采用该方案是因为通过差分放大电路可以提高超声波的发射强度,进而增加了发送距离,最终扩大了设备的测量范围。该系统核心由单片机控制,超声波发射电路能在单片机的控制下发出超声波,接收电路接收到信号之后送入单片机进行处理,算出车尾与障碍物之间的距离,将处理结果送入LED 显示电路进行显示,再按照要求由报警电路进行报警。考虑到测量环境温度对超声波波速的影响,通过温度补偿法对温度进行校正。第四章硬件电路设计4.1 超声波发射电路超声波发射电路原理图如图4-1所示。发射电路主要由反相器74LS04和超声波发射换能器T构成,单片机P1.0端口输出的40kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强度。输出端采两个反向器并联,用以提高驱动能力。上拉电阻R2、R3一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡时间12。发射电路如图4-1所示。 图4-1 超声波发射电路4.2 超声波接收电路超声波在传播的传播中不可避免地衰减,再经过物体表面的吸收、散射后,反射回来的回波信号已经极其微弱,要想测到回波,必须对其进行滤波放大,放大调节后的信号作为输入信号,变成直流电平。这里选用集成电路CX20106A来完成这一任务。集成电路CX20106A是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用的载波频率38 kHz与测距的超声波频率40 kHz较为接近,可以利用它制作超声波检测接收电路(如图4-2)。实验证明用CX20106A接收超声波(无信号时输出高电平),具有很好的灵敏度和较强的抗干扰能力。适当更改电容C4的大小,可以改变接收电路的灵敏度和抗干扰能力。CX20106A内部电路由前置放大器、自动偏置电平控制电路、限幅放大器、带通滤波器、峰值检波器和整形输出电路组成。接收的回波信号先经过前置放大器和限幅放大器,将信号调整到合适的幅值;再经过带通滤波器滤波得到有用信号,滤除干扰信号;最后由峰值检波器和整形电路输出到锁相环路,实现准确的计时。当 CX20106A 接收到40KHz的信号时,会在第7脚产生一个低电平下降脉冲,这个信号可以接到单片机的外部中断引脚作为中断信号输入。超声波接收如图4-2所示。图4-2 超声波接收电路 4.3 显示电路与报警电路的设计4.3.1显示电路的设计在单片机系统中,最常用的显示器有:发光二极管,简称LED(Light Emitting Diode);液晶显示器,简称 LCD;荧光管显示器,简称VFD(Vacuum Fluorscents Display)。其中LED是一种极低功耗显示器,广泛应用于测量产品中,由于本课题不需要复杂的显示信息,所以选择的是LED显示模块,可以节约硬件资源,降低成本。显示电路如下图4-3所示。图4-3 显示电路4.3.2报警电路的设计本设计采用峰鸣音报警电路。峰鸣音报警接口电路的设计只需购买市售的压电式蜂鸣器,然后通过89C51的1根口线经驱动器驱动蜂鸣音发声。压电式蜂鸣器约需10mA的驱动电流,可以使用TTL系列集成电路7406或7407低电平驱动,也可以用一个晶体三极管驱动。在图中,P27接晶体管基极输入端。当P27输出高电平“1”时,晶体管导通,压电蜂鸣器两端获得约+5V电压而鸣叫;当P27输出低电平“0”时,三极管截止,蜂鸣器停止发声。报警电路如图4-4所示图4-4 报警电路4.4 电源设计在本系统中,AT89C51单片机是5V供电,电源电压范围从3.35V,在电路系统需要一个变压芯片,我选择7805芯片,引脚图如下: 这是一个输出正5V直流电压的稳压电源电路。IC采用集成稳压器7805,C1、C2分别为输入端和输出端滤波电容,R16为负载电阻。电路图如4-5所示图4-5 稳压电源第五章系统程序设定5.1 程序完成的功能(1)超声波的发射子程序(定时器0产生方波40khz)(2)回波信号检测子程序(外部中断0,中断服务程序读取TH0,TL0值)(3)测距子程序(根据公式计算)(4)距离的显示(5)对距离进行判断(6)报警5.2 主程序 主程序首先对系统环境初始化,设置定时器T0工作模式为16位的定时计数器模式,置位总中断允许位EA并给显示端P0和P2清0。然后调用超声波发生子程序送出一个超声波脉冲,为避免超声波从发射器直接传送到接收器引起的直接波触发,需延迟0.1ms(这也就是测距器会有一个最小可测距离的原因)后,才打开外中断0接收返回的超声波信号。由于采用12MHz的晶振,机器周期为1us,当主程序检测到接收成功的标志位后,将计数器T0中的数(即超声波来回所用的时间)按下式计算即可测得被测物体与测距仪之间的距离,根据公式d=(C*T0)/2 (其中T0为计数器T0的计数值),测出距离后结果将以十进制BCD码方式显示在LED上,然后再发超声波脉冲重复测量过程14。主程序框图如图5-1所示:图5-1 主程序框图主程序:void main() uchar i; Delay1(1000); TMOD=0X90;TL0=0X00;TH0=0X00;TR0=1;ds_reset(); write_byte(0xcc); write_byte(0x44);read_temp();work_temp();tempereture(); /温度值temperP1=0xff;for(i=10;i0;i-) P1=!P1; /*发送*/*25us去反一次,符合40khz的要求*/ nop(); nop();nop();nop();nop();do /*等待*/while(tt1=1);TR1=0;EA=0;flag1=TH1;flag2=TL1;js(); /*计算距离*/while(1)if(s0;i-)display(); /*反复显示*/ 5.3 温度测量与测距子程序超声波在空气中的传播速度与温度有关,为了正确测出超声波的速度,就需要测量温度,以便获得准确的超声波速度。在电路中增设了温度检测模块,采用DS18B20芯片进行温度检测,将对外界检测到的温度返回单片机中,并通过温度速率表查得最接近检测到的温度的速度值,代入距离计算公式,从而得到比较精确的距离,提高了超声波测距的精度。如图5-2是温度测量与测距流程图。图5-2 测温与测距流程图测距子程序:void js(void)uchar a,b,c,d;uint num;a=flag1/0x10;b=flag1%0x10; /*将flag1中的数分成高低存在a,b中*/c=flag2/0x10;d=flag2%0x10; /*将flag2中的数分成高低存在在c,d中*/num=a*4096+b*256+c*16+d; s=v*num/1000/2;/s=34*num/100/2; /*s就是距离*/5.4 距离显示,判断以及报警子程序 显示模块的功能是利用定时器将得到的最短距离在显示屏上进行显示。测试距离数值通过串行口传送到显示模块。通过调用距离计算子程序,设定安全距离为2m,设定蜂鸣器的工作方式,工作设为1,不工作设为0,若在安全距离之内,蜂鸣器打开报警,否则,蜂鸣器不工作。下图5-3是距离显示判断以及报警流程图图5-3 距离显示,判断以及报警流程图(1)距离显示程序void display()uchar a,b,c,d; /*将数S的各位分开,分别显示*/a=s/1000;b=s%1000/100;c=s%1000%100/10;d=s%1000%100%10;P1=0X3f&(0xf0+a); /*将第一位显示在第一位上*/Delay1(5);P1=0X2f&(0xf0+b); /*将第二位显示在第二位上*/Delay1(5);P1=0X1f&(0xf0+c);/*将第三位显示在第三位上*/Delay1(5);P1=0X0f&(0xf0+d);/*将第四位显示在最后一位上*/Delay1(5);(2) 距离判断以及报警程序 js(); /*计算距离*/while(1)if(s0;i-)display(); /*反复显示*/第六章 误差分析与整改方案6.1超声波测距误差分析根据超声波测距公式L=ct/2,可知测距的误差是由超声波的温度误差、传播速度误差和测量距离传播的时间误差引起的15。(1) 温度误差空气中传播的超声波是由机械振动产生的纵波,由于气体具有反抗压缩和扩张的弹性模量,气体反抗压缩变化力的作用,实现超声波在空气中传播。因此,超声声速与空气的温度有密切关系:v331.50.607t(m/s)式中t=温度(),因此要精确测量与某个物体之间的距离时,则应通过温度补偿的方法加以校正。(2) 时间误差 当要求测距误差小于1mm时,假设已知超声波速度C=344m/s (20室温),忽略声速的传播误差。测距误差st0.25s,考虑换能器通频带及抑制噪声的能力,选择发射脉宽1ms;脉冲发射周期的选择主要考虑微机处理数据的速度,速度赶快,脉冲发射周期可选短些。(2) 在超声波接收回路中串入增益调节(AGC)及自动增益负反馈控制环节因超声接收波的幅值随传播距离的增大呈指数规律衰减,所以采用(AGC)电路使放大倍数随测距距离的增大呈指数规律增加的电路,使接收器波形的幅值不随测量距离的变化而大幅度的变化,采用电流负反馈环节能使接收波形更加稳定。(3) 提高计时精度,减少时间量化误差如采用芯片计时器,计时器的计数频率越高,则时间量化误差造成的测距误差就越小。例如:单片机内置计时器的计数频率只有晶振频率的十二分之一,当晶振频率为6MHz时,计数频率为0.5MHz此时在空气中的测距时间量化误差为0.68mm;当晶振频率为12MHz时,计数频率为1MHz,此时测距时间量化误差为0.34mm。若采用外部硬件计时电路,则计数频率可直接引用单片机的晶振频率,时间量化误差更小。(4)补偿温度对传播声速的影响超声波在介质中的传播速度与温度、压力等因数有关,其中温度的影响最大,因此需要对其进行补偿。有文献表明,按下式计算声速可以达到较高的精度:在空气中,m/s;在海水中,C=1450+4.21t-0.037tt+1,14(S-35)+0.175P m/s式中:t摄氏温度;S水盐度,按千分比计算;P海水静压力,单位为大气压。声速可以用声速仪测量,以验证理论计算的准确性。(5) 补偿系统电路的时间延迟系统电路的时间延迟可通过实验测定,通过测试两个已知标准距离S1、S2所得到的时间t1、t2,可求出系统电路的延迟,(s1t2-s2t1)/(s2-s1)。通过对误差的分析以及优化研究,期望在未来的研究中能够设计出更加完美的方案。结束语作为大学三年最后一次检测,对于这次毕业设计我很慎重,从选题,分析、研究、设计,这几个月中本次毕业设计有条不紊的进行,最终实现了一套比较完整的超声波测距报警系统。在明确了系统所要实现的各项功能后,设计了系统的总体架构,然后详尽地阐述了系统的硬件电路结构和完成各项功能相关的软件设计。本系统是通过51系列单片机(本课题选用AT89C51)控制各个模块来实现超声波发射与接收同时对周围环境的温度进行测量并对温度进行补偿和防撞报警,本课题以AT89C51为核心,灵活的运用超声波换能集成电路作为超声波的接收电路,在讨论了超声波测距原理、硬件电路实现和软件设计方法基础上,完成了对超声波测距的设计要求。从课题选择、方案论证到具体设计,我查阅了大量的资料。对一些疑难的问题,我得到了老师和同学的帮助。但是由于我们当前所学知识的限制,本系统在很多细节方面不能够做到非常完善,只能做到在理论上理解,在实际上缺陷。 通过对这次课题的研究深入了解和设计,我对单片机有了更深入的了解,特别是关于I/O接口。学到更多的是超声波测距技术,超声波测距系统由于不受光线、电磁波、粉尘等的影响,其精度能达到厘米数量级的工程测距精度等的优点,在桥梁、隧道、涵洞等的距离检测中占有一定的优势。本课题中用于汽车倒车,利用超声波测距系统,可以有效地提高车辆在保障和维护过程中的安全性和可靠性。本课题利用51 系列单片机设计,设计简单,操作方便。经过仿真证实可以应用到汽车倒车场合。任何一个方案都经过多次的验证与完善,没有付出亦没有回报,只有经过不断的推敲,研究才能够获得成功。致谢毕业论文暂告收尾,也意味着我的大学生活即将结束。回首既往,自己最宝贵的时光能于校园之中,能在这众多学富五车,才华横溢的老师们的熏陶下度过,实在荣幸。在这三年的时间里,我在学习上和思想上都受益匪浅。这除了自己努力之外,与各位老师,同学和朋友的关心,支持,鼓励是分不开的。时至今日,我的论文基本完成。从最初的茫然不知所措,到慢慢的进入状态,再到对思路逐渐的清晰,整个写作过程难以用语言来表达。历经了2个月的奋战,紧张而又充实的毕业设计终于落下了帷幕。回想这段日子的经历和感受,我感慨万千,在这次毕业设计的过程中,我拥有了无数难忘的回忆和收获。 11月初,我的题目定了下来,是汽车倒车防撞系统。当选题报告,开题报告定下来的时候,我便立刻着手资料的收集工作中,面对书籍资料我不知如何下手。我虚心去请教已毕业的学长和学姐,也积极与同学们沟通,在他们细心的指导下,终于使我对自己现在的工作方向和方法有了掌握。在搜集资料的过程中,我每天给自己制定目标。利用工作之外的时间我在学校图书馆搜集资料,还在网上查找各类相关资料,将这些宝贵的资料全部记在笔记本上,尽量使我的资料完整、精确、数量多,这有利于论文的撰写。然后我将收集到的资料仔细整理分类,及时与同学进行沟通。11月中旬,资料已经查找完毕了,我开始着手论文的写作。在写作过程中遇到困难我虚心请教,并和同学互相交流,请教专业课老师。在大家的帮助下,困难一个一个解决掉,论文也慢慢成型。12月初,论文的文字叙述已经完成。然后开始进行相关图形的绘制工作。在设计初期,由于没有设计经验,觉得无从下手,空有很多设计思想,却不知道应该选哪个,经过导师的指导,我的设计渐渐有了头绪,通过查阅资料,逐渐确立系统方案。当我终于完成了所有打字、绘图、排版、校对的任务后整个人都很累,但同时看着电脑荧屏上的毕业设计稿件我的心里是甜的,我觉得这一切都值了。这次毕业论文的制作过程是我的一次再学习,再提高的过程。在论文中我充分地运用了大学期间所学到的知识。我不会忘记这难忘的2个月的时间。毕业论文的制作给了我难忘的回忆。在我查找资料的日子里,面对无数书本的罗列,最难忘的是每次找到资料时的激动和兴奋;为了论文我曾赶稿到深夜,但看着亲手打出的一字一句,心里满满的只有喜悦毫无疲惫。这段旅程看似荆棘密布,实则蕴藏着无尽的宝藏。我从资料的收集中,掌握了很多汽车倒车防撞系统的知识,让我对我所学过的知识有所巩固和提高,并且让我对当今汽车倒车系统的最新发展技术有所了解。在整个过程中,我学到了新知识,增长了见识。在今后的日子里,我仍然要不断地充实自己,争取在所学领域有所作为。脚踏实地,认真严谨,实事求是的学习态度,不怕困难、坚持不懈、吃苦耐劳的精神是我在这次设计中最大的收益。我想这是一次意志的磨练,是对我实际能力的一次提升,也会对我未来的学习和工作有很大的帮助。一次毕业设计,更加促进了同学之间的友谊,我们互相帮助,互相鼓励。感谢这一路上给我帮助的他们,在大学即将画上句号的时候,又一次被他们感动,青春校园的友谊也更加的珍贵。在此更要感谢我的导师和专业老师,是你们的细心指导和关怀,使我能够顺利的完成毕业论文。在我的学业和论文的研究工作中无不倾注着老师们辛勤的汗水和心血。老师的严谨治学态度、渊博的知识、无私的奉献精神使我深受启迪。从尊敬的导师身上,我不仅学到了扎实、宽广的专业知识,也学到了做人的道理。在此我要向我的导师致以最衷心的感谢和深深的敬意。参考文献1 吴妍.汽车倒车雷达系统研究D.武汉:武汉理工大学,2007.2 孙余凯,等. 传感器技术基础与技能实训教程M北京:电子工业出版社,2006,(3):55-83.3 王红云.基于超声波测距的倒车雷达系统设计J.自动控制与仪器仪表,2008,(3):69-71.4 宋永东, 周美丽. 高精度超声波测距系统设计J. 现代电子技术,2008,31(15):137-139.5 何立民.单片机高级教程应用与设计M.北京:北京航空航天出版社,2003,(8):67-110.6 余锡存,曹国华.单片机原理及接口技术M.西安:西安科技大学出版社,2000.7,24(1):20-100.7韩赞东.超声定位技术在汽车安全预警系统中的应用J.测控技术,2002,(8):15-28.8 刘明. 电子线路综合设计实验教程M天津:天津大学出版社,2008,(5):121-198.9 陈永甫. 红外探测与控制电路M . 北京: 人民邮电出版社, 2004,31(5):62-98.10 HERRINGTION D R.U ltrasonic range finder uses few components J.END,1999,(6):23-26.11 杨自栋.简易超声波测距仪的软硬件设计J.农业装备与车辆工程,2005,(4):42-103.12 王红云.基于
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸下载 > CAD图纸下载


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!