高中数学(北师大版)选修2-2教案:第1章 反证法 第二课时参考教案

上传人:每**** 文档编号:35574374 上传时间:2021-10-27 格式:DOC 页数:4 大小:137.50KB
返回 下载 相关 举报
高中数学(北师大版)选修2-2教案:第1章 反证法 第二课时参考教案_第1页
第1页 / 共4页
高中数学(北师大版)选修2-2教案:第1章 反证法 第二课时参考教案_第2页
第2页 / 共4页
高中数学(北师大版)选修2-2教案:第1章 反证法 第二课时参考教案_第3页
第3页 / 共4页
点击查看更多>>
资源描述
反证法一、教学目标:结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程与特点。二、教学重点:了解反证法的思考过程与特点教学难点:正确理解、运用反证法三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:反证法的思考过程与特点。反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。(二)、探究新课反证法是数学中非构造性证明中的极重要的方法。对于处理存在性问题、否定性问题、唯一性问题和至多、至少性问题,反证法具有特殊的优越性。例1、已知,求证:中,至少有一个数大于25。证明:假设命题的结论不成立,即均不大于25,那么- 1 - / 4,这与已知条件相矛盾。所以,中,至少有一个数大于25。例2、求证:1,2,不可能是一个等差数列中的三项。证明:假设1,2,是公差为d的等差数列的第p,q,r项,则,于是。因为p,q,r均为整数,所以等式右边是有理数,而等式左边是无理数,二者不可能相等,推出矛盾。所以,1,2,不可能是一个等差数列中的三项。例3、如图所示,直线a平行于平面,是过直线a的平面,平面与相交于直线b,求证:直线a平行于直线b。证明:假设命题的结论不成立,即“直线a不平行于直线b”。由于直线a,b在同一平面中,且直线a,b不平行。故直线a,b相交,设交点为A,A在直线b上,故A在平面上。所以,直线a与平面相交于A。这与条件“直线a平行于平面”矛盾。因此,假设不成立,即“直线a平行于直线b”。(三)、小结:反证法与直接证法是相对而言的,在证明过程中我们不能僵化的使用反证法。对于一个证明来说,可能要交替地使用这两种证法。1.哪些命题适宜用反证法加以证明?笼统地说,正面证明繁琐或困难时宜用反证法;具体地讲,当所证命题的结论为否定形式或含有“至多”、“至少”等不确定词,此外,“存在性”、“唯一性”问题. 2.归谬是“反证法”的核心步骤,归谬得到的逻辑矛盾,常见的类型有哪些?归谬包括推出的结果与已知定义、公理、定理、公式矛盾,或与已知条件、临时假设矛盾,以及自相矛盾等各种情形。(四)、练习:1、课本练习2。2、(1)用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )(A) 假设三内角都不大于60度; (B) 假设三内角都大于60度;(C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。(2)已知2,关于pq的取值范围的说法正确的是( )(A)一定不大于2 (B)一定不大于 (C)一定不小于 (D)一定不小于2解析 用反证法可得(1)应选(B) (2)应选(A)3、 用反证法证明命题“如果那么”时,假设的内容应为_.解析:用反证法可得应填 或4、如果为无理数,求证是无理数.提示:假设为有理数,则可表示为(为整数),即. 由,则也是有理数,这与已知矛盾. 是无理数.(五)、作业:课本习题1-3: 1、5补充题:对于直线l:y=kx+1,是否存在这样的实数k,使得l与双曲线C:3xy=1的交点A、B关于直线y=ax(a为常数)对称?若存在,求出k的值;若不存在,请说明理由。证明:(反证法)假设存在实数k,使得A、B关于直线y=ax对称,设A(x1,y1)、B(x2,y2)则 由 由、有a(x1+x2)=k(x1+x2)+2 由知x1+x2= 代入整理得:ak=3与矛盾。故不存在实数k,使得A、B关于直线y=ax对称。五、教后反思: 希望对大家有所帮助,多谢您的浏览!
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!